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Summary:  

In volume constrained subsea systems reducing size is beneficial for several reasons. 

Devices in subsea for often is enclosed in an air tight pressure vessel. Replacing industrial 

controllers and other off-the-shelf components with it a small system on a chip is of 

interest.  

In this master thesis, design and implementation of a prototype subsea system with 

software PID control using a system on a chip device was developed. 

Simulation of the system was built from a mathematical model describing the system and 

programmed in LabVIEW software. 

Complete prototype of the system was developed and performance in temperature stability 

was tested. 
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1 Introduction 
The projects main goal is to develop a prototype software Proportional-Integral-Derivative 

(PID) controller in a system on a chip (SOC) device, for temperature regulation in a subsea 

sensor system. This task is provided by OCTIO. OCTIO works with geophysical monitoring 

services for oil drilling operations, to ensure safe drilling without discharging into the 

environment or other accidents. The system in focus already have temperature control by 

using off-the-shelf industrial PID controllers. With a SOC device the size would deduct by 

50%. Which is significant and of interest, since the system is often mobilized. Size and 

weight deduction isn’t only beneficial for practical reasons, but also safety reasons.  Detailed 

description of what the subsea sensor system is comprised of will not be mentioned, since it’s 

a secret OCTIO wants to keep. 

1.1 Background 

Commercial PID controllers often includes display and/ or rack mounts. Each of the 

controllers need power modules. Furthermore, control and monitoring needs dedicated 

communication channels, often ethernet, RS-232 or RS-485, which may add the need of 

protocol converters. This is impractical for volume constrained subsea application, where 

everything must be fitted into pressure vessels. It also could create the issue of too much self 

heating from electronic components in warmer environments. 

One example of a temperature regulated subsea sensor system is comprised by splitting the 

sensor system and the control systems into multiple units, as shown in Figure 1-1. The aspect 

of self-heating from electronic components, is handled this way. But, splitting the system into 

several units also adds on the risk faulty wire connections, by needing connection between 

the units as well as top side control system. 

 

Figure 1-1: Subsea sensor system comprised of several units. 

By implementing software PID controller the temperature regulated subsea sensor system can 

be reduced to one unit, as shown in Figure 1-2. Which is advantageous for several reasons, 

including the deduction of industrial components needed, but also transportation and easier to 

handle when lowering it down into the ocean and up again. Also, it will reduce power 

consumption and risk of wires to break.  
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Figure 1-2: Subsea sensor system comprised of one unit. 

1.2 Objectives 

The task description specifies development and implementation of a versatile and compact 

PID temperature controller in a SOC device. With the following possible sub tasks gathered 

from the task description in Appendix A: 

1. Study and gain experience of a commercial PID controller in a “sample temperature 

regulation system”. 

2. Build a, somewhat simplified, mathematical model of the system, and use it to create 

a realistic simulator of the temperature regulation system. Behavior can be compared 

with data from real appliance. 

3. Include a PID controller to the simulator. 

4. Develop and implement a software PID controller on a microcontroller, with 

comparable performance as the reference temperature controller. 

5. Develop and implement a simple register based system for parameter setting, control 

and monitoring. 

6. Extend the system to an RTOS task (for integration into an existing software system). 

7. Extend the system to comprise a multistage (cascade) PID controller. 

1.3 Focus Areas 

In dialogue with OCTIO, the tasks were prioritized as such; main goal is to develop a 

physical prototype with software PID on a SOC device. With performance in temperature 

stability verified for use in subsea sensor systems, +/- 0.1 °C. Extend it with a simple 

graphical user interface for adjusting parameters and monitoring. Build a simulator and 

extend it with PID control. 

Programming language LabVIEW will be used for developing a simulation of the system and 

Python for development of a functioning prototype software for testing. The controller 

performance in temperature stability will be verified by testing performance in air and water, 

and while submerging into water. Necessary research regarding hardware is essential before 

any development of prototype can begin. 

Challenges may be developing a simulator realistic enough to be able to use it for tuning PID 

purposes. Also finding good PID parameters, since the systems environment will change 
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from air with temperatures up to around 26 °C to water with temperatures down to around -3 

°C. 

1.4 System description 

System description is visualized in Figure 1-3, with functional and non-functional 

requirements listed beneath. 

 

Figure 1-3: System description 

Functional requirements: 

• Read temperature. 

• Compute control signal. 

• Displaying system variables. 

• Temperature logging. 

• Parameter setting. 

Non-functional requirements: 

• Temperature stability +/- 0.1 °C. 

• Pulse width modulation. 

• Programming languages: 

o G (LabVIEW) 

o Python 

• Hardware: 

o PT-100, 4- or 3-wire. 

o 12 V Heat pads 

o Solid-State Relay (for easier testing on real system) 

1.5 Report structure 

The report is divided into the following chapters: 

- 1: Introduction 

- 2: Research and theory 

- 3: Simulation 

- 4: Building Physical Prototype 

- 5: Developing Software PID 

- 6: Testing and Tuning Prototype 

- 7: Conclusion and Future Works 
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2 Research and theory 
This chapter is about theory used to solve the task. Including principals, components and 

programming languages in the field of computer science. As well as PID control theory and 

needed understanding of Thermodynamics. 

2.1 Computer Science 

The following subchapter presents the needed knowledge about electrical components, 

programming, communication protocols, signal modulation and process. 

2.1.1 System on a Chip (SOC) 

A system on a chip (SOC) is a small chip with all required electronic components and circuits 

in a given system, for example a computer. It often comprised of an processor, memory and 

some external interfaces for communication protocols, such as HDMI, USB and SPI. A 

difference between a traditional PC and a SOC device is that the CPU, memory and other 

components isn’t replaceable. All the components are integrated into one chip. [1] 

SOCs are commonly divided into 3 types: 

• SOCs built around a microcontroller. 

• SOCs built around a microprocessor. 

• SOCs designed for a specific purpose, which doesn’t fit into the 2 other categories.[1] 

2.1.2 Python Programming Language 

Python is an interpreted programming language where the syntax emphasizes readability. It 

will be used in this thesis to create the software PID controller. The Python interpreter and 

the standard library is open source software. In Python there is no compilation which makes 

the edit, test and debug faster. If a bad input or a bug appears the Python interpreter will raise 

an exception. Fallowed by printing its stack trace.[2]  

2.1.3 LabVIEW  

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is software for visual 

programming in the language G. Which is the main difference to most other development 

platforms. Predefined components can be added to the program using drag and drop from a 

list. G is a dataflow programming language, e.g. it changes outputs depending on variables in 

the program flow. The changes are reflected in real time. [3] 

A LabVIEW program is called Virtual Instrument (VI) and a VI can be implemented inside 

another VI. Two windows are used when programming in LabVIEW, Front Panel and Block 

Diagram. The Front panel is the GUI, with components like indicators and controls, which is 

outputs and controllable inputs. The Block Diagram window is where the program flow is 

determined. An example of the two windows is shown in Figure 2-1, window to the left is the 

Front Panel and to the right is the Block Diagram. [3] 
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Figure 2-1: The two LabVIEW windows Front Panel, to the left, and Block Diagram, to the right. 

2.1.4 Pulse-width modulation (PWM) 

Pulse-Width Modulation (PWM) is a modulation with the width of an impulse. Where the 

widths of the pulses correspond to specific data values. PWM operations is like a switch that 

constantly rotates on and off, illustrated in Figure 2-2. 

 

Figure 2-2: Three different pulse width signals. 

2.1.5 Serial Peripheral Interface (SPI) 

This subchapter is based on reference [4]. The SPI communication protocol will be used in 

this thesis, for retrieving measurement data from an RTD temperature sensor amplifier with 

ADC chip MAX31865. SPI is a synchronous serial communication interface for short 

distance communication. SPI is full duplex, meaning both receiving and sending 

simultaneously, using a master-slave architecture as shown in Figure 2-3.  

 

Figure 2-3: Serial Peripheral Interface communication example. 

CLK is clock generated by the master. MOSI stands for Master Output Salve Input and is data 

output from the master. MISO is data output from the slave and stands for Master Input Slave 

Output. CS is Slave Select, used for slave selection, it could be left out in a single master to 

single slave circuit.  
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The master and slave uses shift registers to shift data in Serial In Serial Out (SISO) mode. 

Data transmission starts when the master configures the clock frequency. During each clock 

cycle the master sends a bit on the MOSI connection and the slave reads it. Simultaneously, 

the slave sends the master a bit over the MISO connection, as illustrated in Figure 2-4. 

 

Figure 2-4: Two shift registers connected together forming a circular buffer. 

The master sets the clock frequency for SPI data transfer, but clock polarity (CPOL) and 

clock phase (CPHA) must also match with the slave. CPHA defines when to transfer data and 

CPOL is the idle or active state of the clock. Clock Edge (CKE) is inverted clock phase. 

Figure 2-5 shows a timing diagram representing a data transfer in a time domain containing 

multiple rows.  

 

Figure 2-5: SPI timing diagram for clock polarity and phase.[4] 

CPOL equal to 0 means that the base value of clock is 0, e.g. idle state is 0 and active state is 

1. If CPHA also is equal to 0 data transmissions occurs during 0 to 1 transitions. Different 

SPI clock configurations are shown in Table 2.1. 

Table 2.1: Different modes of SPI. 

SPI MODE CPOL CPHA CKE 

0 0 0 1 

1 0 1 0 

2 1 0 1 

3 1 1 0 
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2.1.6 Threads 

A process can be divided into blocks of statements called threads, illustrated in Figure 2-6. It 

is the smallest sequence of programmed instructions for the processor registers. A thread is 

responsible for the execution of its block of statements. [5] 

 

Figure 2-6: A process that is divided into 4 block statements called threads. 

2.2 PID control 

This chapter is about basic knowledge of PID control and based on reference [6]. Figure 2-7 

shows how a closed loop control system uses feedback, to determine new output value. It 

calculates the error value between the measured feedback, process variable, and the set point, 

which is the desired value to achieve. Based on this error value the controller performs steps 

to bring the output value closer to the desired set point. 

 

Figure 2-7: Closed loop control system using feedback to steer the output value to the desired process variable, 

which is the set point value. 

PID controller is the most common control algorithm and is used in a closed control feedback 

loop to regulate a process, for example temperature in tank by controlling heat elements. PID 

stands for proportional-integral-derivative which is the three mathematical operations the 

regulator performs, these are shown in Figure 2-8 and explained in more depth in the 

following subchapters. 
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Figure 2-8: PID controller is comprised of 3 terms, proportional, integral and derivative term. 

There are variations of the PID algorithm, but the one used in this project is shown in 

equation (2.1). 

𝑢(𝑡) = 𝐾𝑝 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡
  

 
(2.1) 

Where 𝑒(𝑡) is the error value, equation for calculating 𝑒(𝑡) shown in equation (2.2), and 𝑢(𝑡) 

is the control signal to the actuator, also known as output value. 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 is respectively 

the coefficients for the proportional, integral and derivative terms, often denoted P, I and D 

respectively. These coefficients, called gains, changes the error value through the controller 

and generates new output value to the actuator, to bring the process value near set point. The 

gain values are altered to find the optimal system response, this procedure is called tuning, 

more about this in chapter 2.2.5. 

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡)  (2.2) 

Where the difference between set point, 𝑟(𝑡), and process variable, 𝑦(𝑡), accumulates to the 

error value, 𝑒(𝑡).  

2.2.1 P-term  

A controller with only P-term, commonly called P-controller, has output value proportional to 

the error value, since control value is error value multiplied by the proportional coefficient, as 

shown in equation (2.3). That means, larger error, or larger 𝐾𝑝 value, gives larger output. 

This type of controller has some drawbacks, for example never reaching set point in steady 

state, because of small error value the controller output becomes negligible. E.g. even when 

reaching steady state there is still error, an offset from set point, commonly called steady-

state error, shown in Figure 2-9. Another drawback is if 𝐾𝑝 value is too high, that will lead to 

oscillation of process variable. 

P-term = 𝐾𝑝 𝑒(𝑡)  (2.3) 

 

Figure 2-9: Steady-state error between set point and process variable, also called offset. 

2.2.2 I-term  

The I-term, shown in equation (2.4), eliminates offset. It accounts for past values of the error 

value by integrating them from startup t = 0 to present time. I-term seeks to remove the 

steady state error by adding control effect based on historic cumulative error value. I-term 
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won’t stop changing the output value until the error value is 0. When the error value is 0, the 

effect in output value is solely from the I-term.1 

I-term = 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
  (2.4) 

2.2.3 D-term 

D-term, shown in equation (2.5), is a best estimate of the future trend of the error value, 

based on its current rate of change. Using the D-term could allow for higher values for 𝐾𝑝 

and 𝐾𝑖 whilst the loop is still stable, giving faster response and better loop performance.2 E.g. 

the main purpose of D-term is improving the transient response. Though a problem with the 

D-term is that it’s sensitive to noise. With a noise spike in measurement of process variable 

the D-term will increase to compensate and furthermore make the control less stable.  

D-term = 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
  (2.5) 

2.2.4 Anti Windup 

Every actuator has a saturation limit, for example a valve cannot open more than 100% or 

close less than 0%. Under normal circumstances these limits shouldn’t be reached. But say 

there is a disturbance and the error value grow beyond the normal circumstances and the 

output value maximum isn’t enough to compensate for this disturbance. It will cause the I-

term to accumulate over the time period to bring back process variable near to the set point 

by integrating up the deviation so that the output value will increase and increase. Therefor 

overshooting and continuing to increase as this accumulated error is growing, this is called 

integral windup, see Figure 2-10. As a result, the output value may exceed the saturation 

limits of the final control element, because of the I-term, and become unstable. 

 

Figure 2-10: Example of how integral windup might affect the control system after a disturbance. With no 

limitations on the I-term the peaks grow, and the system becomes unstable. 

                                                 

1 If it hasn’t manually been added effect. 

2 Assuming good tuning for 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑. 
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Since windup is caused by the I-term, the solution is to clamp it. If only limiting output value, 

the I-term will still grow too large, or low, and the windup problem will still be present. 

There are different solutions to this problem, for example: 

• setting error value equal to 0 when output value is at saturation limit. 

• giving the I-term maximum and minimum values within saturation limits. 

2.2.5 Tuning PID controller theory 

Before tuning it is important to define performance requirements. This is often measured by 

applying a step change in set point and then measuring the response of the process variable. 

The response can then be evaluated by measuring defined waveform characteristics, as shown 

in Figure 2-11. The definition of these quantities can vary from industry to academic.  

 

Figure 2-11: Example of a PID-controlled closed loop response to a change in set point. 

Figure 2-11 shows the names of the different waveform characteristics. Rise time is the time 

from process variable goes from 10% to 90% of steady state. Overshoot is the amount the 

process variable goes over, in positive y-direction, the process variable value in steady state. 

The time required for the process variable to settle within bounds of the steady state process 

variable value, for example +/- 5%, is called settling time. As mentioned in chapter 2.2.1, the 

steady-state error is the offset between process variable and set point in steady state. 

Deadtime is the delay from when the step change happens to when the process variable 

change can be observed. 

There are several methods created for tuning PID controller, these will not be discussed here. 

Instead the characteristics of typical system response while tuning and the effects from 

changing the different PID gains will be in focus. Table 2.2 shows trade-offs of how 

individually changing the different PID coefficients typically affect the system response. 

These correlations aren’t always accurate since each gain has an effect on each other, for best 

performance all the coefficients must be tuned jointly.  

Table 2.2 Possible effects of independently tuning the PID gains on a closed loop response. 

 Rise time Overshoot Settling time Steady-state error Stability 
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Increasing 𝐾𝑝 Decrease Increase Small increase Decrease Degrade 

Increasing 𝐾𝑖 Small decrease Increase Increase Large decrease Degrade 

Increasing 𝐾𝑑 Small decrease Decrease Decrease Minor change Improve 

Some typical damped system responses are unstable, critically damped, under-damped and 

over-damped, these are shown in Figure 2-12. Unstable systems produce an oscillation 

diverging step response, this kind of system won’t settle down. An under-damped system has 

an oscillating response as well, but in this case, it eventually dampens out, unlike the unstable 

system. Over-damped system is characterized by long rise and settling time, but no 

overshoot. A critically damped system response is a compromise of response time and 

damping effects. It has shorter rise and settling time compared to over-damped system, but 

longer peak time in comparison with under-damped system. 

 

Figure 2-12: System damping examples. 

Loop cycle is also an important parameter of a closed system. It is the time interval between 

each call to the PID-controller, also sometimes called cycle time or sample time. This 

depends on the system to be controlled, if it changes quickly a fast loop cycle is required, or 

the system will become unstable. If the loop cycle is very fast, it isn’t usually a problem, but 

it could make the D-term be essentially just noise. 
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3 Simulation 
This chapter is developing a simulation of the temperature behavior in the subsea sensor 

system. By analyzing the system, building a mathematical model, calculating constants, 

creating simulation software in LabVIEW and comparing with the real systems behavior. The 

calculated values describing the system will not be presented, since OCTIO do not wish to 

have them openly available. However formulas used to find these values will be mentioned. 

3.1 Analyze 

The system, shown in Figure 3-1, has a cylindrical shaped pressure vessel defining the 

boundaries. Inside there are multiple layers of solids and fluids before reaching the inner area. 

The system is completely sealed, so that the system isn’t affected by pressure changes in 

surroundings. However, what does affect the system is environment temperature, which is the 

main disturbance and is why a controller is needed. The compartment connected to the 

heating element is the actuator for the controller and is denoted heating compartment. 

The subsea sensor system, in addition to have changes in environment temperature, have 

change in environment medium. It will go between air and water, which has different heat 

transfer coefficients. Water transfers heat faster than air. For the environment this system is 

used the water environment will usually also have lower temperatures than when in air 

surroundings. For the real system, internal temperature will stabilize around 8.7 °C for 

environment water temperature of 4 °C. While the internal temperature would rise to around 

30 °C in environment air of 25 °C, which means it isn’t linear [7].  

 

Figure 3-1: Cross-section of the subsea sensor system. 
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3.2 Building the Mathematical Model 

This subchapter is based on reference [8]. The goal is to create a differential equation which 

calculates the temperature inside the system, based on disturbance from environment 

temperature and medium, as well as effect from heating compartment and self heating from 

electric components. E.g. the energy balance for thermodynamic systems is a good starting 

point, which is elaborated in following subchapter. 

3.2.1 Energy Balance  

Balance law for thermodynamic systems gives the energy balance shown in equation (3.1). 

Time argument is excluded in this subchapter for simplicity reasons.  

𝑑𝐸

𝑑𝑡
= ∑ 𝑄𝑖𝑛 − ∑ 𝑄𝑜𝑢𝑡 + ∑ 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (3.1) 

The energy balance deriving will be based on assumptions and equations representing energy 

inputs and outputs presented in following subchapter. 

3.2.2 Assumptions about the System 

Energy is assumed to be proportional with temperature and volume, as seen in equation (3.2). 

𝐸 = 𝑐𝜌𝑉𝑇  (3.2) 

Where c is specific heat capacity of the system [J/kg K], 𝜌 is the density of the system 

[kg/m3], V is volume of the system [m2] and T is temperature inside the system [K]. 

Qin in the energy balance is representing the added effect. This can be divided into effect 

from electrical components, denoted 𝑃𝑐, and effect added from heating compartment, when 

temperature control is implemented, denoted 𝑃𝐻𝑃, as shown in equation (3.3).  

Also assuming, that there is no storage of energy in the heating element, which means the 

effect added to heat element is added directly to the system. Therefor it isn’t necessary to 

derive an own energy balance for the heat pads. 

𝑄𝑖𝑛 = 𝑃𝑐 + 𝑃𝐻𝑃 = 𝑃𝑖𝑛 (3.3) 

Where 𝑃𝑖𝑛 is the accumulated heat effect added. Heat loss is denoted 𝑄𝑜𝑢𝑡, as shown in 

equation (3.4). 

𝑄𝑜𝑢𝑡 = 𝑈[𝑇𝑒𝑛𝑣 − 𝑇] (3.4) 

Where U is the overall heat transfer [J/s m2K] or [W/m2K]. Expression for U can be derived 

from equation for thermal resistance shown in equation (3.5).  

𝑅𝑡𝑜𝑡 =
1

𝑈
 (3.5) 

By multiplying with U on both sides and then dividing by 𝑅𝑡𝑜𝑡, U is alone on left-hand side, 

shown in equation (3.6). 

𝑈 =
1

𝑅𝑡𝑜𝑡
 (3.6) 

Inserting equation (3.6) into equation (3.4) gives equation (3.7) to describe heat loss. 
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𝑄𝑜𝑢𝑡 =
𝑇𝑒𝑛𝑣 − 𝑇

𝑅𝑡𝑜𝑡
 (3.7) 

There is no energy generation, no chemical reaction etc. In other words, 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 can be 

neglected from the energy balance, as shown in equation (3.8). 

𝑑𝐸

𝑑𝑡
= ∑ 𝑄𝑖𝑛 − ∑ 𝑄𝑜𝑢𝑡 (3.8) 

3.2.3 Differential equation 

The energy balance can now be written as shown in equation (3.9), based on assumptions and 

expressions from previous subchapter. 

𝑑(𝑐𝜌𝑉𝑇)

𝑑𝑡
= 𝑃𝑖𝑛 −

(𝑇 − 𝑇𝑒𝑛𝑣)

𝑅𝑡𝑜𝑡
 (3.9) 

Assuming constant volume, density and specific heat capacity they can be moved out of the 

derivation as shown in equation (3.10). 

𝑐𝜌𝑉
𝑑𝑇

𝑑𝑡
= 𝑃𝑖𝑛 −

(𝑇 − 𝑇𝑒𝑛𝑣)

𝑅𝑡𝑜𝑡
 (3.10) 

Which leads to a differential equation, shown in equation (3.11), for temperature inside the 

subsea sensor system, which can be used for simulation. 

𝑑𝑇

𝑑𝑡
=

1

𝑐𝜌𝑉
[𝑃𝑖𝑛 −

1

𝑅𝑡𝑜𝑡

(𝑇 − 𝑇𝑒𝑛𝑣)] (3.11) 

The differential equation has three time dependent parts: 

• the internal temperature, T. 

• the environmental temperature, 𝑇𝑒𝑛𝑣. 

• added power, 𝑃𝑖𝑛. 

3.3 Developing Simulation in LabVIEW 

This chapter is about developing the LabVIEW simulation of the subsea sensor. It will 

include code and functionality. 

3.3.1 LabVIEW Code for Simulating 

Figure 3-1 shows how the differential equation is comprised in the Block Diagram window.  

Inside the frame in the lower left corner its created a logic to use either RTot for water 

environment or air. This is automatically chosen based on environment temperature. If 

environment temperature is over 15.5 °C it will use RTot for air. 

In Figure 3-2 the PID algorithm made in a Formula Node is shown. The output of the PID 

controller is scaled to a PWM signal using logic shown in Figure 3-3. How the whole 

program is connected inside a Control and Simulation loop can be seen in Figure 3-4. 
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Figure 3.1: LabVIEW code of the differential equation. 

 

Figure 3-2: PID controller made using Formula Node in LabVIEW. 



  3 Simulation 

21 

 

Figure 3-3: Scaling output of the PID to a PWM signal. 

 

Figure 3-4: The complete Block Diagram view of the LabVIEW program. 

3.4 Comparing Simulator to the Subsea Sensor System 

This chapter is about comparing simulator to the real subsea sensor systems temperature 

behavior with respect to environment temperature. The values representing the real subsea 

sensor was approved for sharing by OCTIO.  

Figure 3-5 shows the simulator responding to step response in environment temperature. The 

first step is from 25 °C to 4 °C, the second is from 4 °C back to 25 °C. From the graph it can 

be read that temperature inside the system in 25 °C environment air stabilizes on 30 °C. It can 

also be read that it stabilizes on 8.7 °C in environment of 4 °C. 

 

Figure 3-5: Simulator responding to step response in environment temperature. 
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The simulated temperature response curve is also of similar shape the real system. For 

example, with the step response from 25 °C to 4, the curve slowly decreases in the beginning. 

Then it decreases very fast until slowly converging into steady-state. 



  4 Building Physical Prototype 

23 

4 Building Physical Prototype 
This chapter is about designing and building a prototype subsea sensor system with control 

system on a Raspberry Pi. It is comprised of materials lying around and commercial available 

electronic components. The software PID controller is developed using Python programming 

language. 

4.1 Design Specifications 

Figure 3-1 shows the subsea sensor system that will be made a prototype of. By using 

materials at hand combined with available industrial electronic components. For water proof 

housing it was found a spare pressure vessel, of different dimensions than the real appliance. 

Which is ideal since it will have similar heat transfer values. The heating compartment will 

be represented by a soda can, as shown in Figure 4-1, with three available heat pads glued to 

it. Temperature sensor will be placed in the middle of the soda can. The different layers 

between pressure vessel and heating compartment will be represented by a layer of insulation 

and air. The internal heating from electrical components will not be represented in the 

prototype. 

 

Figure 4-1: Prototype of subsea sensor system. 

The available heat pads are 12 V with 7.5 Watts (W) and will need 1.875 Ampere (A) when 

connected in parallel, as shown in equation (4.1). Which is more than the Raspberry Pi can 

provide with its outputs for 3.3 V and 5 V. To generate this signal, it will be utilized a 

laboratory power supply. The voltage will be sent through a relay which is to be controlled by 

the Raspberry Pi. An analogue to digital converter (ADC) is needed to read the temperature 

sensor using Raspberry Pi. Overview of prototype with subsea sensor system and control 

system can be seen in Figure 4-2. 

𝐼 =
𝑉

𝑃
→ 𝐼 =

12 𝑉

7.5 + 7.5 + 7.5 𝑊
= 1.875 𝐴 (4.1) 
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Figure 4-2: Prototype of subsea sensor system with control system. 

4.2 Chosen Hardware 

This subchapter is about hardware chosen to be used in the prototype system. 

4.2.1 Raspberry Pi 

Raspberry Pi, shown in Figure 4-3, is a single-board computer capable of running different 

types of OS. It has a Broadcom SOC, including an ARM compatible central processing unit 

(CPU) and graphics-processing unit (GPU). All storage is on an external micro SD card. [9] 

 

Figure 4-3: Raspberry Pi. [10] 

It’s chosen to use the third generation Raspberry Pi, Raspberry Pi 3 Model B, which has WI-

FI and Bluetooth module integrated. It has 40 General-purpose input/output (GPIO), 

UART, I2C and SPI support. Specifications are shown in Table 4.1. 

Table 4.1: Raspberry Pi 3 Model B technical specifications. [10] 

SOC Broadcom BCM2837  

CPU 64-bit quad-core, 1.2 GHz ARM Cortex-A53 

GPU Dual core Videocore IV® Multimedia co-processor 

RAM  1 GB LPDDR2  

Wireless connection 802.11 b/g/n 2.4 GHz Wireless LAN and Bluetooth 4.1 
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GPIO 40-pins 

Ports 1 x 10/100 Ethernet port, 1 x HDMI video/audio connector, 1 x 

RCA video/audio connector, 1 x CSI camera connector, 4 x 

USB 2.0 ports 

Storage Micro SD card 

Power Micro USB connector for 2.5 A power supply 

4.2.2 Temperature sensor 

The PT-100 temperature sensor chosen is shown in Figure 4-4, it’s a 4-wire platinum 

resistance temperature detector (RTD). PT-100 also comes with 2- or 3-wires which has less 

accuracy, since the 4-wire connection eliminates the influence of the connection lead on the 

measuring result [11]. It is class A in accuracy, meaning it will be +/- 0.23 °C in temperature 

range -40 to 40 °C, compared to class B RTDs which is +/- 0.5 °C in the same range [12]. For 

more information about the sensor, see reference [13]. 

 

Figure 4-4: RS Pro PT100 Sensor  

4.2.3 Analogue to Digital Converter  

Instead of a regular ADC it was chosen to use PT100 RTD amplifier, shown in Figure 4-5, 

with internal ADC. Adafruit PT100 RTD Temperature Sensor Amplifier, MAX31865, is 

designed to read the low resistance and automatically adjust and compensate for the 

resistance of the connecting wires, which gives higher accuracy for temperature readings. 

[14] 

 

Figure 4-5: Adafruit PT100 RTD Temperature Sensor Amplifier MAX31865. [15] 
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MAX31865 can be read using SPI connection. It could be connected to Raspberry Pi is 

shown in Figure 4-6. ADC resolution for MAX31685 is 15 bit, which in nominal temperature 

resolution is 0.03125 °C.[16] For more information about MAX31865 see datasheet in 

reference [16]. MAX31865 will from here be referred to as ADC. 

 

Figure 4-6: Connection between MAX31865 and Raspberry Pi. 

4.2.4 Solid-State Relay and Transistor 

The relay chosen to control the 12 V signal, Crydom Solid-State Relay (SSR) DC60S7, is 

shown in Figure 4-7. SSRs are fully electronic, there is no moving parts inside. They are 

fundamentally like other relays, there is complete electrical isolation between their low 

voltage input and, potentially high, voltage output contacts. The output is like an electrical 

switch, by having very high resistance when open, and a very low resistance when closed. 

Advantages with SSR is, among others, that it has fast response time and have high life-time 

expectancy.[17]  

 

Figure 4-7: Crydom DC60S7 Solid-State Relay. [18] 

The chosen SSR has minimum turn on voltage at 3.5 V[19].  The Raspberry Pi GPIOs output 

is 3.3 V, which isn’t enough to turn on the SSR. Instead by using an NPN transistor, 1K Ω 

resistor, Raspberry Pi 5 V output DC power source and 3.3 V GPIO as shown in Figure 4-8, 
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the control signal is 5 V. For more information about Crydom DC60S7 see datasheet in 

reference [19]. 

 

Figure 4-8: Wiring to generate a 5 volts control signal from Raspberry Pi, using NPN transistor and 1K Ω 

resistor. 

4.3 Assembling the Prototype 

This chapter is about assembling the physical prototype with the parts mentioned in previous 

subchapter. It includes soldering, electrical wiring, with testing of connections and circuit 

logic, as well as fitting it into the pressure vessel. 

4.3.1 Soldering the ADC 

The ADC came without the headers connected to the terminal block. To secure good 

connection these had to be soldered, as shown in Figure 4-9. The soldering where verified by 

connecting the amplifier to the temperature sensor and Raspberry Pi, as shown in Figure 

4-10. Then run a test program on the Raspberry Pi to read the temperature. The temperature 

read was compared to another verified temperature sensor. This verified the soldered 

connections and that the amplifier and temperature sensor was working properly. 
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Figure 4-9. Soldering headers to the terminal block on the RTD temperature sensor amplifier. 

 

Figure 4-10: Raspberry Pi connected to the amplifier, which is attached to the PT100 temperature sensor. 

4.3.2 Control Signal Circuit 

The circuit for generating 5 V control signal using NPN transistor and a resistor was wired 

and was tested by measuring voltage across the SSR, as shown in Figure 4-11. The voltmeter 

reads 5.113 V when the GPIO pin is set high, as shown in Figure 4-12, and around 0 V when 

GPIO pin is set low. The circuit performance was concluded satisfactory, control signal of a 

little over 5 V isn’t an issue when SSRs max control input is 32 V [19]. 
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Figure 4-11: Electric circuit of how the voltmeter is connected to the control signal circuit, to read voltage 

across the SSR. 

 

Figure 4-12: Voltmeter reading voltage across the SSR. 

4.3.3 Heating compartment 

The three available heat pads are silicone heater pads and will be glued to the soda can, 

around its circumference, to provide homogenous heating, as shown in Figure 4-13.  
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Figure 4-13: Three heat pads glued to a soda can. 

There is used two 5-way conductors to connect the heat pads in parallel, shown in Figure 

4-14. One of the conductors is connected to the output of the SSR, with the 12 V signal. The 

other is connected to ground, as shown in Figure 4-15. The circuit was verified by sending 

the 12 V through the SSR and then physically feeling the heating effect of each heat pad. 

 

Figure 4-14: 5-way conductor connected to the three heat pads positive side. 

 

Figure 4-15: Three heat pads connected in parallel with a 12 V signal controller by a SSR. 

4.3.4 Fitting Temperature Sensor 

The temperature sensor will be located inside the soda can which will be placed inside the 

pressure vessel, as shown in Figure 4-1. The sensor is taped to wooden chopsticks to keep it 

approximately in the middle of the soda can, as shown in Figure 4-16. 
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Figure 4-16: Temperature sensor taped to wooden chopsticks. 

The chopsticks are put into the soda can through its opening, with a skew angle, all the way 

to the bottom. The chopsticks are taped to the soda can to secure the angle, as shown in 

Figure 4-17. Insulation material is then fitted into the soda cans opening, to ensure that heated 

air won’t escape easily, as shown in Figure 4-18. 

 

Figure 4-17: The chopsticks are taped to the soda can so it won’t move. 
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Figure 4-18: Insulation material is fitted into the soda cans opening, to ensure that heated air won’t escape 

easily. 

4.3.5 Fitting into Pressure Vessel 

The soda can, with heat pads and temperature sensor, is fasten to metal rods connected to the 

pressure vessel lid with bundling strap and tape, as shown in Figure 4-19. The cables for the 

heating circuit is strapped in the bottom, securing its location while going into the pressure 

vessel. All cables out of the pressure vessel needs to go through a, already existing, rubber 

tube in the lid, shown in Figure 4-20, to keep it waterproof.  

 

Figure 4-19: The insides of the physical prototype subsea sensor system. 
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Figure 4-20: There are two rubber tubes in the lid of the pressure vessel where all the cables must go through, to 

keep it water proof. 

Since the system will be moved around for testing in different environments, the temperature 

sensors cable is fitted with a connector, at outside end of the rubber tube, as shown in Figure 

4-21. This way it can easily be detached from the amplifier and moved without unscrewing 

the cables from the terminal. 

 

Figure 4-21: Fitting temperature sensor cables into a connector for easy detachment. 

4.3.6 Connecting to Raspberry Pi 

Table 4.2 and Table 4.3 presents how the Raspberry Pi is connected to RTD temperature 

sensor amplifier and the control signal circuit respectively, based on the Raspberry Pi pinout 

overview shown in Figure 4-22. 

Table 4.2: Raspberry Pi pin connection to RTD temperature sensor amplifier MAX31685. 

Raspberry Pi 3 Model B MAX31685 

Pin name: Pin number: Name: 

3.3v DC Power 01 VIN 

Ground 06 GND 

GPIO11 (SPI_CLK) 23 CLK 

GPIO09 (SPI_MISO) 21 SDO 

GPIO10 (SPI_MOSI) 19 SDO 

GPIO08 (SPI_CE0_N) 24 CS 
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Table 4.3: Raspberry Pi pin connection to the control signal circuit. 

Raspberry Pi 3 Model B Component 

name: 

Transistors 

connection side: 
Pin name: Pin number: 

5v DC Power 02 SSR Collector 

GPIO17 (GPIO GEN0) 11 Resistor  Base 

Ground 39  Emitter 

 

Figure 4-22: Pinout of Raspberry Pi 3. [20] 

4.3.7 Closing the Pressure Vessel 

Then the lid, containing all the components, is put into the pressure vessel. The complete 

physical prototype of the subsea sensor system is shown in Figure 4-23. 
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Figure 4-23: The physical prototype subsea sensor system. 
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5 Developing Software PID  
This chapter is about the pre-preparation of the software development and the finished 

application. Presenting the planning techniques as well as snippets of the code. 

5.1 Application planning 

This chapter presents the basic ideas for the program and the following subchapters shows the 

planning drafts in the startup phase of software development. By using the planning tools 

FURPS and Use Case Diagram.  

System overview is shown in Figure 5-1. The PID application retrieves parameters from the 

GUI and sends process status to it. It also reads information from the process and writes new 

control signal to the process.  

 

Figure 5-1: System overview from GUI to the application to the process. 

Figure 5-2 explains the different components to be connected to the system. For information 

about the Control signal circuit, Subsea sensor system and ADC see chapter 4. 

 

Figure 5-2: System overview of main components in the prototype subsea sensor software PID control system. 

5.1.1 FURPS 

FURPS is a model for classifying the functionality and requirements of a software program 

and is short for Functionality, Usability, Reliability, Performance and Supportability.[21] The 

FURPS is developed based on the task description and cooperation with external supervisors 

from OCTIO. The FURPS focus is on functionality and usability and it is shown in Table 5.1. 
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Table 5.1: FURPS 

F: Read Temperature: Establish connection to ADC. Retrieve temperature 

information from ADC using SPI. 

Activate Heating: Sets correct GPIO high, using GPIO library, to activate the SSR. 

PID controller: Regulating heating based on temperature readings. 

Monitor and Alter: Monitoring temperature and controller output and alter PID 

parameters. 

U: Application Language: English. 

System: Raspbian. 

Displaying current temperature, controllers output, sample time and PID 

parameters. 

R: Running for several days. 

P: Performance in temperature stability. 

S: - 

5.1.2 Use Case Diagram 

A Use Case Diagram, shown in Figure 5-3, is created to visualize the functionality described 

in the FURPS. It describes how the different system parts are connected.  

 

Figure 5-3: Use Case diagram for the PID controller software. 

The User is a person with access to the system. User is connected to Monitor and Alter where 

it’s possible to view current temperature and controller output. By receiving those values 

from the PID controller connection to Monitor and Alter. This connection also gives the User 

possibility to adjust the PID parameters. 

PID controller is connected to Read Temperature where temperature information is retrieved 

from the ADC using SPI. It’s also connected to Activate Heating, which turns on the SSR 

controlling the power to the heat pads. 
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5.2 Graphical User Interface (GUI) 

The GUIs main purpose is give an easy way to adjust control parameters and to monitor the 

process. Instead of changing the code between tests and reading temperature values from the 

Terminal window. All the applications functionalities are gathered on one page, shown in 

Figure 5-4. 

 

Figure 5-4: The applications Graphical User Interphase.  

The three topmost text fields, Temp, u_time and u %, are read only showing temperature, 

controller output in time [s] and percent respectively. They are from here denoted text output 

fields. The other text fields are for adjusting PID parameters and are denoted text input fields. 

They are updated during the startup procedure with values from a Comma Separated Values 

(CSV) config file containing initial values. Except from at startup, they are solely change 

according to user input. The functionality of the buttons is explained in Table 5.2. By clicking 

the x in the topmost right corner, the application shuts down securely with a shutdown 

procedure. 

Table 5.2: Functionality of the buttons in the GUI. 

Name: Functionality: 

Update sample time Reads the text input field Sample time and sets the systems sample 

time variable equal to this value. 

Save as initial values Reads all text input fields and saves these to a CSV config file. 

Update SP Reads the text input field SP and sets the systems set point variable 

equal to this value. 

Update all Reads all text input fields and sets the systems respective variable 

equal to its counterpart text field value. 

Reset PID to initial 

values 

Updates all text input fields with values from a CSV config file.  



  5 Developing Software PID 

39 

5.3 Program Functionality 

This chapter will explain the main functionalities of the application and includes some 

snippets of the code. For full code see APPENDIX 

5.3.1 The Control Loop 

The control loop is started in a separate thread, before initializing the GUI. The control loop 

functionality is explained in Figure 5-5. The control loop is a while loop inside a method 

called control_loop(). It has its own start up procedure, initializing variables and creating new 

CSV file for measurement data. With a unique filename of the current date and time, securing 

no overwrite of measurement data.  

 

 

Figure 5-5: The functionality for the control loop. 

The control loop is controlled by a global Boolean variable named RunProgram. As long as 

RunProgram is equal to TRUE the control loop continues its cycle. The control loop is 

enclosed by a try-finally statement, to secure proper shutdown, e.g. turning of heating. This is 

shown in Figure 5-6. A finally clause is always executed before leaving the try statement. To 

visually verify that the application is shut down properly it is printed “### PROPER 

SHUTDOWN ###” in the Raspberry Pi terminal. 
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Figure 5-6: The try-finally statement that enclosuses the While Loop, to secure proper shutdown. 

5.3.2 Reading Temperature from the ADC 

For reading temperature there is created a class called ADC, this class is based on code found 

in reference [22]. A code snippet of the method, inside the ADC class, for reading 

temperature with return value is showed in Figure 5-7. The steps of this method is illustrated 

in Figure 5-8. In step 1 sets the clock frequency. Step 2 is the shift register data exchange. 

Step 3 is converting reading from Ω to °C, this formula is explained in the following 

subchapter. Last step, step 4 is returning the temperature value. If its detected cable faults 

when reading the temperature, an error message describing the cable fault will be printed in 

the Terminal before properly shutting down. 

 

Figure 5-7: Snip of code from readTemp method in the ADC class. 
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Figure 5-8: The steps for reading temperature. 

5.3.3 Converting Resistance to Temperature 

This subchapter is based on reference [16]. For converting the resistance to temperature, the 

Callendar-Van Dusen equation, shown in equation (5.1), can be used. The resistance vs 

temperature curve isn’t completely linear, which the Callendar-Van Dusen equation 

describes. A straight-line approximation would give error 0 °C at 0 °C, but for 100 °C the 

error is -1.4 °C and error -1.75 °C for temperature -100 °C. 

𝑅(𝑇) = 𝑅0(1 + 𝑎 𝑇 + 𝑏 𝑇2 + 𝑐 (𝑇 − 100)𝑇3 (5.1) 

Where T is temperature in °C, R(T) is resistance at T and 𝑅0 is resistance at T equal to 0 °C. 

The Callendar-Van Dusen coefficients value are shown in equation (5.2). 

𝑎 = 3.90830 ∙ 10−3

𝑏 = −5.77500 ∙ 10−7

𝑐 = 0 𝑓𝑜𝑟 0° 𝐶 ≤ 𝑇 ≤ 850°𝐶 𝑎𝑛𝑑

𝑐 = −4.18301 ∙ 10−12  𝑓𝑜𝑟 − 200° 𝐶 ≤ 𝑇 ≤ 0°𝐶

 (5.2) 

Callendar-Van Dusen solved for temperature, in the range 0 to 850 °C, is shown in equation 

(5.3). 

𝑇 = (−𝑅0 ∙ 𝑎 +
((𝑅0 ∙ 𝑎)2 − 4 ∙ 𝑅0 ∙ 𝐵 ∙ (𝑅0 − 𝑅(𝑇)))

1
2

2
∙ 𝑅0 ∙ 𝐵 (5.3) 

R(T) is found by using equation (5.4). 
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𝑅(𝑇) =
𝐴𝐷𝐶𝑐𝑜𝑑𝑒 ∗ 𝑅𝑟𝑒𝑓

𝐹𝑆 − 𝐴𝐷𝐶𝑐𝑜𝑑𝑒
 (5.4) 

Where 𝐹𝑆 is the ADC’s full-scale code, 𝐴𝐷𝐶𝑐𝑜𝑑𝑒 is the ADC’s output code and 𝑅𝑟𝑒𝑓 is the 

reference resistor. For temperatures under 0 °C the straight-line approximation will be used, 

as shown in equation (5.5). 

𝑇 = (
𝐴𝐷𝐶𝑐𝑜𝑑𝑒

32
) − 256 (5.5) 

5.3.4 PID Class 

The PID class is based on the PID code in reference [23].  Figure 5-9 shows the code for the 

method with the PID algorithm. For explanation of the algorithm see chapter 2.2. This 

method is called each Control loop with an updated temperature value. There is implemented 

Anti Windup by keeping the I-term within maximum and minimum values. By using if and 

and elif, else if, statements to check if I-term is crossing these limits. For example if the I-

term exceeds the upper limit, it is sat equal to the upper limit. The output_value is as well 

checked and if it has outside the saturation limits it will be sat equal to the respective 

saturation limit it has breached. 

 

Figure 5-9: Snippet of the PID algorithm code. 
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6 Testing and Tuning Prototype 
This chapter will present PID tests on the simulator and on the prototype. The tests are 

conducted to find the PID parameters which will provide the best performance in temperature 

stability. 

6.1 Testing Anti Windup and Sample Time Values 

In the following subchapters different Anti Windup and Sample Time values will be tested 

and compared. 

6.1.1 Testing different Anti Windup Boundaries 

The tests were conducted in an air environment of 25 °C. During the tests of different anti 

windup boundaries all other parameters were kept constant, these can be seen in Table 2.1. 

The test results are shown in Figure 6-1, Figure 6-2, Figure 6-3 and Figure 6-4, where the anti 

windup upper limit was decreased between each test.  In the controller output is shown as a 

blue line rising from the bottom. From the figures it can be seen that the first test is the only 

one standing out. It has longer time between peak values, as well as larger overshoot and a 

larger undershoot.  

From the plots it can also be seen a trend, that the lower upper anti windup saturation limit 

gives higher frequency in the control signal oscillation. It’s decided to go forward with anti 

windup boundaries from 0 to 80, presented in Figure 6-3, since that was the one keeping 

closest to Set Point. 

Table 6.1: Constant PID parameters during Anti Windup boundary test. 

PID Parameter: Value 

𝐾𝑝 0.2 

𝐾𝑖 1.7 [s] 

𝐾𝑑  0.000001 [s] 

Set Point 31°C 

Sample Time 0.5 [s] 
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Figure 6-1: Windup boundary test 1, with saturation limit from 0 to 180. 

 

Figure 6-2: Windup boundary test 2, with saturation limit from 0 to 100. 

 

Figure 6-3: Windup boundary test 3, with saturation limit from 0 to 80. 
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Figure 6-4: Windup boundary test 4, with saturation limit from 0 to 30. 

6.1.2 Sample Time 

The test was done in air environment at around 25 °C. During the tests of different sample 

times all other parameters were kept constant, these can be seen in Table 6.2: Constant PID 

parameters during Sample Time test.Table 6.2. The tests are presented in Figure 6-5, Figure 

6-6 and Figure 6-7 with Sample Time values 0.25 [s], 0.5 [s] and 1 [s] respectively. The 

performance in temperature stability is equal for all the values tested. It was decided to use 

Sample Time equal to 0.5 [s]. 

Table 6.2: Constant PID parameters during Sample Time test. 

PID Parameter: Value 

𝐾𝑝 0.2 

𝐾𝑖 1.7 [s] 

𝐾𝑑  0.000001 [s] 

Set Point 31°C 

Anti Windup 0 to 80 

 

Figure 6-5: Sample Time test 1, with Sample Time equal to 0.25 [s]. 
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Figure 6-6: Sample Time test 2, with Sample Time equal to 0.5 [s]. 

 

Figure 6-7: Sample Time test 3, with Sample Time equal to 1 [s]. 

6.2 Tuning PID on Simulation 

Simulation was tuned using Try and Error method. Started with an initial guess of Kp equal to 

0.1 and Kd equal to 0.000001. Also using the values for Anti Windup and Sample Time found 

previously. There were systematically tried different values for Ki in a Set Point step response 

from 26 °C to 31 °C. Environment temperature was set to 25 °C and self heating variable Hc 

was sat to 0. Since the prototype doesn’t have any self heating from electrical components. 

After settling on a Ki equal to 0.2, Kp was systemically tested and so on Kd. PID parameters 

found was Kp equal to 0.1, Ki equal to 0.2 and Kd equal to 0.001. The simulated step response 

with these parameters is shown in Figure 6-8. 
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Figure 6-8: Step response in Set Point from 26 to 31 on Simulation. 

6.3 Prototype Tuning  

The PID parameters found for PID on the simulation is tested on the prototype under similar 

conditions. Set Point step response from 26 °C to 31 °C in air environment at 25 °C. The 

results are presented in Figure 6-9 and is not providing satisfactory temperature stability. 

 

Figure 6-9: Simulation tuned PID parameters tested on prototype by step response in Set Point from 26 °C to 31 

°C. The test is conducted in air environment at 25 °C. 

Further testing was done by doing step response Set Point in 25 °C air, 3 °C water and air 0 

°C. Temperature stability during a change in environment from air 25 °C to water 3 °C and 

from air 25 °C to air 0 °C. PID parameters found was Kp equal to 30, Ki equal to 0.5 and Kd 

equal to 0.1. A set point step response with these parameters in environment 0°C is shown in 

Figure 6-10. 
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Figure 6-10: Step response 0°C environment. 

Before reaching the parameters, shown in the figure above, it was conducted an environment 

disturbance test from air to water 3 °C shown in Figure 6-11. The parameters in this test was 

Kp = 30, Ki = 0.29 and Kd = 0.01. It’s pretty obvious after making the plot in excel that it 

converges into a steady-state error but it wasn’t noticed from the LivePlot. Therefor these 
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parameters were further tested in air environment of 0 °C, were the steady-state was clearer 

as shown in Figure 6-12. 

 

Figure 6-11: Disturbance test, from air 25 °C to water 3 °C. Changes at grey line. 

 

Figure 6-12: PID parameter test in 0 °C air environment. 
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6.3.1 Disturbance in Environment test. 

A last test with environment change every 12 minutes over 3 hours timespan was conducted, 

as shown in Figure 6-14. The test is based on heat loss development from a test shown in 

Figure 6-13. The environment was changed between air 22 °C to air 0 °C. Initial system 

temperature was 22.6 °C. The test was started by putting the prototype into air 0 °C from air 

22 °C. The performance of temperature stability was +/- 0.1 °C. The first 15 minutes of the 

test is shown in Figure 6-15. The error compared with environment change is shown in 

Figure 6-16, worth mentioning that the largest error peak is confirmed as noise. The other 2 

peaks are probably also noise but needs more data to confirm, or implement a filter and see if 

it still occurs. Figure 6-17 shows the correlation between environment change and control 

signal. 

 

Figure 6-13: Heat loss development from 31 °C internal temperature, in 0 °C air environment. Conducted by 

turning off heating after being stable at 31 °C. 

 

Figure 6-14: Prototype PID parameter test, by every 12 minutes changing between air 22 °C to air 0 °C. The test 

was conducted over 3 hours. The environment temperature is showed in red and is collected at time the change 

occurs. 
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Figure 6-15: The first ~15 minutes of the test. 

 

 

 

Figure 6-16: Error from setpoint compared with sampled environment temperature. 
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Figure 6-17: Control signal versus environment temperature. 
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7 Conclusion and Future Works 
Developed software PID system worked as intended and proved good performance in 

temperature stability compared for subsea application. But before actual implementation more 

test would be needed. 

The Raspberry Pi 3 as a SOC device for software PID implementation worked as intended. The 

ADC worked as intended. 

The building of a Physical prototype subsea sensor system was as intended.  

The simulation wasn’t good enough to be used for tuning, but there was correlation to the real 

application, so it might be a good starting point. 

7.1 Improving Simulation 

Heat response is very fast. Adding some sort of delay to the heat added (P_in) might solve 

this. Another possible solution is to use known data from real application as parameters A, B 

and C, since it simulation of a differential equation. E.g. : A x + B u + C. 

7.2 Extending Prototype Software PID 

• More water tests to confirm performance in temperature stability. 

• Test software PID on real subsea sensor system.  

• Extend to Cascade control system. 

• Activate plot from GUI. 

• Improve error handling. Only handling the most probable and important, errors at this 

moment. 

• Add a measurement filter. 

• Clean up and improve code. To increase computational speed and readability. 

7.3 Developing for the Real System 

Since C++ is needed for the real system, the options are: 

• Manually convert Python to C++. E.g. find similar libraries in C++ as to the python 

libraries used. 

• Treat Python code as prototype and start from scratch. Use the FURPS+ and USE 

CASE to develop the software PID in C++. 
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Appendix A – Task Description 

 

FMH606 Master’s Thesis  
Title: Compact temperature regulator for subsea sensors 

 

Supervisor: Hans-Petter Halvorsen 

 

External Partner: Octio 

 

Task Description:   

Development and implementation of a versatile and compact PID temperature controller in a 

SmartFusion2 SoC FPGA device, or similar ARM microcontroller, and verifying 

performance, temperature stability for use with a subsea pressure and gravity monitoring 

system. 

 

Possible sub tasks (ranked): 

1. Study and gain experience of a commercial PID controller in a “sample temperature 

regulation system” 

2. Simulate a system model of a sample temperature regulation system including PID 

controller. 

3. Develop and implement a SW PID controller architecture with comparable 

performance as the reference temperature controller.  

4. Develop and implement a simple register based system for parameter setting, control 

and monitoring 

5. Extend the system to an RTOS task (for integration into an existing SW system)  

6. Extend the system to comprise a multistage (cascade) PID controller 

The actual implementation can be done on a variety of ARM microcontroller platforms such 

as: 

• Raspberry PI 3 

• Arduino 

• SmartFusion2 SoC FPGA 

• others 

The SW language should preferably be based on C/C++ or Python. 

 

The simulation platform could be based on Matlab, Simulink or LabView. 

 

The verification of the performance could be by comparison of the reference system with an 

industrial controller and the SW PID controller. 
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Task Background:   

Commercial PID temperature controller often comes in enclosures including display or with 

rack mounts which are impractical for volume constrained subsea applications. Control and 

monitoring require a dedicated communication channel, normally RS-232 or ethernet, which 

adds on the complexity.  

  

As few commercial or open core software temperature controller are available, developing a 

flexible SW architecture allowing integration into a general micro-controller system, is of 

interest. 

 

Student Category: IIA students. 

 

 

Practical Arrangements: The assignment is reserved for a student that already has a 

collaboration with the company in question. 

 

OCTIO may provide a development platform (ARM). An example PID controller core (for 

Arduino) may be provided. Lab space and physical prototype is available for testing and/ or 

comparing systems. 

 

The student needs to be located in Bergen, Norway.  

 

Signatures:   

 

 

Supervisor (date and signature): 

 

 

Students (date and signature):   
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Appendix B – Software PID code 

 

import time, math 

#for filename 

from time import gmtime, strftime 

import RPi.GPIO as GPIO 

import threading 

#for GUI 

import sys 

#QT stuff 

import pyqtgraph as pg 

import PyQt5 

from PyQt5 import QtCore 

from PyQt5.QtWidgets import * 

 

import numpy as np 

 

# The window from QtCreator aka GUI 

import mainwindow_auto 

import csv 

 

# create class for our Raspberry Pi GUI 

class MainWindow(QMainWindow, mainwindow_auto.Ui_MainWindow): 

    # access variables inside of the UI's file 

 

    ### functions for the buttons to call 

    # def pressedQuit(self): 

         

    def pressedSaveInit(self): 

        global SampleTime 

        SP = gui.txtSetSP.value() 

        P = gui.txtSetKp.value() 

        I = gui.txtSetKi.value() 

        D = gui.txtSetKd.value() 
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        fileName = 'pid_config.csv' 

        mode = "w" 

        data = [] 

        data = [SP, P, I, D, SampleTime] 

        csv_writer(data, fileName, mode)    

 

    def pressedUpdateSP(self): 

        SP = gui.txtSetSP.value() 

        newSetpoint(SP) 

 

    def pressedUpdateAll(self): 

          print("start program") 

          SP = gui.txtSetSP.value() 

          P = gui.txtSetKp.value() 

          I = gui.txtSetKi.value() 

          D = gui.txtSetKd.value() 

           

          newAllParameters(SP,P,I,D) 

 

    def pressedNewSampleTime(self): 

        global SampleTime 

        SampleTime = gui.txtSampleTime.value() 

 

    def pressedResetPID(self): 

        csv_reader('pid_config.csv') 

 

        #event handler for when you X-out the window 

    def closeEvent(self, event): 

        #make sure control loop ends properly.  

        global RunProgram 

        RunProgram = False #This will end the while loop. 

         

        event.accept() #Accepting closeing 

 

    def __init__(self): 



  7 Conclusion and Future Works 

61 

        super(self.__class__, self).__init__() 

        self.setupUi(self) # gets defined in the UI file 

 

        ### Hooks to for buttons 

        self.btnSaveInitValues.clicked.connect(lambda: self.pressedSaveInit()) 

        self.btnUpdateSP.clicked.connect(lambda: self.pressedUpdateSP()) 

        self.btnUpdateAll.clicked.connect(lambda: self.pressedUpdateAll()) 

        self.btnResetPID.clicked.connect(lambda: self.pressedResetPID()) 

        self.btnNewSampleTime.clicked.connect(lambda: self.pressedNewSampleTime())        

         

class PID: 

    """PID Controller 

    """ 

 

    def __init__(self, P=0.2, I=0.0, D=0.0): 

 

        self.Kp = P 

        self.Ki = I 

        self.Kd = D 

 

        self.sample_time = 0.00 

        self.current_time = time.time() 

        self.last_time = self.current_time 

 

        self.clear() 

 

    def clear(self): 

        """Clears PID computations and coefficients""" 

        self.SetPoint = 0.0 

 

        self.PTerm = 0.0 

        self.ITerm = 0.0 

        self.DTerm = 0.0 

        self.last_error = 0.0 
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        # Windup Guard 

        self.int_error = 0.0 

        self.windup_lower_guard = 0.0 

        self.windup_guard = 80.0 

 

        self.output = 0.0 

 

    def update(self, feedback_value): 

        """Calculates PID value for given reference feedback 

 

        .. math:: 

            u(t) = K_p e(t) + K_i \int_{0}^{t} e(t)dt + K_d {de}/{dt} 

        """ 

        error = self.SetPoint - feedback_value 

         

        self.current_time = time.time() 

        delta_time = self.current_time - self.last_time 

        delta_error = error - self.last_error 

 

        self.PTerm = self.Kp * error 

        self.ITerm += error * delta_time 

        

        # Integral Anti Windup 

        if (self.ITerm < self.windup_lower_guard): 

            self.ITerm = self.windup_lower_guard 

        elif (self.ITerm > self.windup_guard): 

            self.ITerm = self.windup_guard 

 

        self.DTerm = 0.0 

        if delta_time > 0: 

            self.DTerm = delta_error / delta_time 

         

        # Remember last time and last error for next calculation 

        self.last_time = self.current_time 

        self.last_error = error 
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        output_value = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm) 

 

        # To hold output within bounduries 

        if output_value > self.windup_guard: 

            self.output = self.windup_guard  

        elif output_value < self.windup_lower_guard: 

            self.output = self.windup_lower_guard #lower limit since there is no cooling 

        else: 

            self.output = output_value 

 

 

    def setKp(self, proportional_gain): 

        self.Kp = proportional_gain 

 

    def setKi(self, integral_gain): 

        self.Ki = integral_gain 

 

    def setKd(self, derivative_gain): 

        self.Kd = derivative_gain 

 

    def setWindup(self, upper_windup, lower_windup): 

        self.windup_guard = upper_windup 

        self.windup_lower_guard = lower_windup 

 

    def setSP(self, set_point): 

        self.SetPoint = set_point 

 

class ADC(object): 

    """Reading Temperature from the MAX31865 with GPIO using  

       the Raspberry Pi. """ 

         

        #The MIT License (MIT) 

        # 

        #Copyright (c) 2015 Stephen P. Smith 
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        # 

        #Permission is hereby granted, free of charge, to any person obtaining a copy 

        #of this software and associated documentation files (the "Software"), to deal 

        #in the Software without restriction, including without limitation the rights 

        #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 

        #copies of the Software, and to permit persons to whom the Software is 

        #furnished to do so, subject to the following conditions: 

        # 

        #The above copyright notice and this permission notice shall be included in all 

        #copies or substantial portions of the Software. 

 

    def __init__(self, csPin = 8, misoPin = 9, mosiPin = 10, clkPin = 11): 

        self.csPin = csPin 

        self.misoPin = misoPin 

        self.mosiPin = mosiPin 

        self.clkPin = clkPin 

        self.setupGPIO() 

         

    def setupGPIO(self): 

        GPIO.setwarnings(False) 

        GPIO.setmode(GPIO.BCM) 

        GPIO.setup(self.csPin, GPIO.OUT) 

        GPIO.setup(self.misoPin, GPIO.IN) 

        GPIO.setup(self.mosiPin, GPIO.OUT) 

        GPIO.setup(self.clkPin, GPIO.OUT) 

 

        GPIO.output(self.csPin, GPIO.HIGH) 

        GPIO.output(self.clkPin, GPIO.LOW) 

        GPIO.output(self.mosiPin, GPIO.LOW) 

 

    def readTemp(self): 

         

        self.writeRegister(0, 0xA2) 

        # conversion time is less than 100ms 

        time.sleep(.01) #giving it 10ms for conversion 
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        # read all registers 

        out = self.readRegisters(0,8) 

 

        # define least and most significant bit  

        [rtd_msb, rtd_lsb] = [out[1], out[2]]  

        # picking out the ADC code for the temperature reading 

        rtd_ADC_Code = (( rtd_msb << 8 ) | rtd_lsb ) >> 1 

        # converting ADC code to degrees Celsius 

        temp_C = self.calcPT100Temp(rtd_ADC_Code) 

 

        status = out[7] 

         

        # 10 Mohm resistor is on breakout board to help 

        # detect cable faults 

        # bit 7: RTD High Threshold / cable fault open  

        # bit 6: RTD Low Threshold / cable fault short 

        # bit 5: REFIN- > 0.85 x VBias -> must be requested 

        # bit 4: REFIN- < 0.85 x VBias (FORCE- open) -> must be requested 

        # bit 3: RTDIN- < 0.85 x VBias (FORCE- open) -> must be requested 

        # bit 2: Overvoltage / undervoltage fault 

        # bits 1,0 don't care     

        #print "Status byte: %x" % status 

 

        if ((status & 0x80) == 1): 

            raise FaultError("High threshold limit (Cable fault/open)") 

        if ((status & 0x40) == 1): 

            raise FaultError("Low threshold limit (Cable fault/short)") 

        if ((status & 0x04) == 1): 

            raise FaultError("Overvoltage or Undervoltage Error")  

 

        return temp_C 

 

    def writeRegister(self, regNum, dataByte): 

        GPIO.output(self.csPin, GPIO.LOW) 
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        # 0x8x to specify 'write register value' 

        addressByte = 0x80 | regNum; 

         

        # first byte is address byte 

        self.sendByte(addressByte) 

        # the rest are data bytes 

        self.sendByte(dataByte) 

 

        GPIO.output(self.csPin, GPIO.HIGH) 

         

    def readRegisters(self, regNumStart, numRegisters): 

        out = [] 

        GPIO.output(self.csPin, GPIO.LOW) 

         

        # 0x to specify 'read register value' 

        self.sendByte(regNumStart) 

         

        for byte in range(numRegisters):     

            data = self.recvByte() 

            out.append(data) 

 

        GPIO.output(self.csPin, GPIO.HIGH) 

        return out 

 

    def sendByte(self,byte): 

        for bit in range(8): 

            GPIO.output(self.clkPin, GPIO.HIGH) 

            if (byte & 0x80): 

                GPIO.output(self.mosiPin, GPIO.HIGH) 

            else: 

                GPIO.output(self.mosiPin, GPIO.LOW) 

            byte <<= 1 

            GPIO.output(self.clkPin, GPIO.LOW) 
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    def recvByte(self): 

        byte = 0x00 

        for bit in range(8): 

            GPIO.output(self.clkPin, GPIO.HIGH) 

            byte <<= 1 

            if GPIO.input(self.misoPin): 

                byte |= 0x1 

            GPIO.output(self.clkPin, GPIO.LOW) 

        return byte     

     

    def calcPT100Temp(self, RTD_ADC_Code): 

        R_REF = 430.0 # Reference Resistor 

        Res0 = 100.0; # Resistance at 0 degC for 400ohm R_Ref 

        a = .00390830 

        b = -.000000577500 

         

        R_T = (RTD_ADC_Code * R_REF) / 32768.0 # PT100 Resistance 

 

        temp_C = -(a*Res0) + math.sqrt(a*a*Res0*Res0 - 4*(b*Res0)*(Res0 - R_T)) 

        temp_C = temp_C / (2*(b*Res0)) 

 

        if (temp_C < 0): #use straight line approximation if less than 0 

            temp_C = (RTD_ADC_Code/32) - 256 

        return temp_C 

 

class FaultError(Exception): 

        #make sure control loop ends properly.  

        global RunProgram 

        RunProgram = False #This will end the while loop. 

    pass 

 

def get_temp(): 

    #import max31865 

    csPin = 8 

    misoPin = 9 
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    mosiPin = 10 

    clkPin = 11 

    adc = ADC(csPin,misoPin,mosiPin,clkPin) 

    tempC = adc.readTemp() 

     

    return tempC 

 

def scale_u(x): # y = ax + b 

    global SampleTime 

    y1 = 0 

    y2 = SampleTime 

    x1 = pid.windup_lower_guard 

    x2 = pid.windup_guard 

 

    a = (y2 - y1)/(x2-x1) 

    b = y1 - (a * x1) 

    y = (a * x + b) 

    return y 

 

def scale_u_prosent(u): #Scale u PWM til prosent 

    global SampleTime 

    scaled = (u / SampleTime) * 100 

    return scaled 

 

def scale_u_for_plot(x): # y = ax + b 

    y1 = 0.7 

    y2 = 39.30 

    x1 = 0 

    x2 = 100 

 

    a = (y2 - y1)/(x2-x1) 

    b = y1 - (a * x1) 

    y = (a * x + b) 

    return y 
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def start_heating(duration): 

    GPIO.setmode(GPIO.BCM) 

    GPIO.setup(17, GPIO.OUT) 

    GPIO.output(17, GPIO.HIGH) 

    time.sleep(duration) #Signal width 

    GPIO.output(17, GPIO.LOW) 

    GPIO.cleanup() 

    pass 

 

def control_loop(): 

    start_time = time.time() 

    prev_time = start_time 

     

    lastTemp = 0.0 

     

    csv_reader('pid_config.csv') 

     

    #Creating measurement file with explanatory names in the first row 

    #filename is unique. It's used date and time in filename to secure no overwriting 

    fileName = strftime("%Y-%m-%d %H:%M:%S", gmtime()) + '.csv'  

    data = [] 

    data = ['Date Time', 'Temperature', 'u_prosent','SampleTime', 'pid.SetPoint', 'pid.Kp', 

'pid.Ki', 'pid.Kd','windup'] 

    mode = "a" 

    csv_writer(data, fileName, mode) 

 

    global SampleTime 

 

    # Creating global arrays for plotting purposes 

    global arrayTempC,arraySP,arrayCnt, arrayU  

    arrayTempC = [] 

    arraySP = []  

    arrayCnt = [] 

    arrayU = [] 

 



  7 Conclusion and Future Works 

70 

    # counter for plotting 

    cnt=0 

 

    try: 

        global RunProgram 

 

        while RunProgram: 

             

            temperatureC = get_temp() 

             

            deltaTemp1 = temperatureC - lastTemp 

            deltaTemp2 = lastTemp - temperatureC 

             

            #filter to remove bad readings 

            if cnt == 0: 

                pass 

            elif deltaTemp1 > 0.5: 

                temperatureC = lastTemp 

            elif deltaTemp2 > 0.5: 

                temperatureC = lastTemp 

            else: 

                pass 

             

            lastTemp = temperatureC 

            # Run PID 

            pid.update(temperatureC) 

            # Scale pid PWM 

            u_scaled = scale_u(pid.output) 

            u_prosent = scale_u_prosent(u_scaled) 

            # Update GUI 

            gui.txtShowTemp.setValue(temperatureC) 

            gui.txtShowUTime.setValue(u_scaled) 

            gui.txtShowUPorsent.setValue(u_prosent)         

            # Run heating 

            start_heating(u_scaled) #PWM signal 
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            # Log measurement and parameters to .csv file 

            data = [] 

            mode = "a" 

            data = [strftime("%Y-%m-%d %H:%M:%S", gmtime()), temperatureC, u_prosent, 

SampleTime, pid.SetPoint, pid.Kp, pid.Ki, pid.Kd, pid.windup_guard] 

            csv_writer(data, fileName, mode) #Call the writer 

            # Log data for graph .txt file 

            arrayTempC.append(temperatureC)                      

            arraySP.append(pid.SetPoint)                      

            arrayCnt.append(cnt) 

            u_for_plot = scale_u_for_plot(u_prosent) 

            arrayU.append(u_for_plot) 

            txt_writer() 

             

            cnt=cnt+1 

            if(cnt>4000):            #If you have 4000 or more points, delete the first one from the 

array 

                arrayTempC.pop(0)    #This allows us to just see the last 4000 data points 

                arraySP.pop(0) 

                arrayCnt.pop(0) 

                arrayU.pop(0) 

 

            # setting loop time 

            # SampleTime is controlling looptime 

            sleep = SampleTime - (time.time() - prev_time) 

 

            if sleep >= 0.01: 

                time.sleep(sleep-0.01) # Compensate time this calculation takes 

            else: 

                time.sleep(0.0001) 

 

            prev_time = time.time() 

             

            pass 
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    finally: 

        GPIO.cleanup() #To secure that heating is shutdown. 

        print("### PROPER SHUTDOWN ###") 

         

def txt_writer(): 

    global arrayTempC, arraySP, arrayCnt, arrayU 

     

    file = open("temperature.txt","w") 

    for index in range(len(arrayCnt)): 

        file.write("\n" + str(arrayCnt[index])+ 

","+str(arrayTempC[index])+","+str(arraySP[index])+","+str(arrayU[index])) 

    file.close() 

 

         

def csv_writer(data, path, mode): 

    """ 

    Write data to a CSV file path 

    """ 

    with open(path, mode, newline='') as csv_file: 

        writer = csv.writer(csv_file, delimiter=',') 

        #for line in data: 

        writer.writerow(data) 

         

def csv_reader(path): 

    parameter = [] 

    with open(path, newline='') as csv_file: 

        reader = csv.reader(csv_file, delimiter=',') 

        for row in reader: 

            parameter = row 

 

    #Also set new sampletime 

    global SampleTime 

    SampleTime = float(parameter[4]) 

    

newAllParameters(float(parameter[0]),float(parameter[1]),float(parameter[2]),float(paramete

r[3])) 



  7 Conclusion and Future Works 

73 

     

def newSetpoint(SP): 

    pid.SetPoint = SP 

 

def newAllParameters(SP, P, I, D): 

    pid.SetPoint = SP 

    pid.setKp(P) 

    pid.setKi(I) 

    pid.setKd(D) 

    newParametersToGui() 

     

def newParametersToGui(): 

    global SampleTime 

    gui.txtSetSP.setValue(pid.SetPoint) 

    gui.txtSetKd.setValue(pid.Kd) 

    gui.txtSetKi.setValue(pid.Ki) 

    gui.txtSetKp.setValue(pid.Kp) 

    gui.txtSampleTime.setValue(SampleTime) 

 

def runGui(): 

    gui.show() 

    newParametersToGui() 

    # without this, the script exits immediately. 

    sys.exit(app.exec_()) 

 

if __name__ == "__main__": 

     

    global RunProgram, SampleTime 

    SampleTime = 2.0 

    RunProgram = True 

 

    pid = PID(0, 0, 0) # object is accesible to all 

 

    app = QApplication(sys.argv) 

    gui = MainWindow() 
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    #daemon not = True, so that control_loop will end properly 

    t = threading.Thread(target=control_loop) 

    t.start() 

 

    runGui() 

    


