

www.usn.no

Faculty of Technology, Natural sciences and Maritime Sciences
Campus Porsgrunn

FMH606 Master's Thesis 2018

Compact temperature regulator

for subsea sensor

Sondre Benjamin Mogård

www.usn.no

The University College of Southeast Norway takes no responsibility for the results and

conclusions in this student report.

Course: FMH606 Master's Thesis, 2018

Title: Compact temperature regulator for subsea sensor

Number of pages: 72

Keywords: PID, Software PID, Subsea, compact regulator

Student: Sondre Benjamin Mogård

Supervisor: Hans-Petter Halvorsen

External partner: OCTIO

Availability: Open

Summary:

In volume constrained subsea systems reducing size is beneficial for several reasons.

Devices in subsea for often is enclosed in an air tight pressure vessel. Replacing industrial

controllers and other off-the-shelf components with it a small system on a chip is of

interest.

In this master thesis, design and implementation of a prototype subsea system with

software PID control using a system on a chip device was developed.

Simulation of the system was built from a mathematical model describing the system and

programmed in LabVIEW software.

Complete prototype of the system was developed and performance in temperature stability

was tested.

 Preface

3

Preface
This thesis is the final project as part of the master’s degree in System and Control

Engineering at University College of Southeast Norway (HSN). The thesis is written during

the spring semester of 2018.

I wish to thank my supervisor Hans-Petter Halvorsen and Trond Arne Espedal for guidance

and supervision throughout the project.

Bergen, 15/05-2018

Sondre Benjamin Mogård

 Contents

4

Contents

Preface ... 3

Contents ... 4

1 Introduction ... 6

1.1 Background ... 6
1.2 Objectives .. 7
1.3 Focus Areas .. 7
1.4 System description ... 8
1.5 Report structure .. 8

2 Research and theory ... 9

2.1 Computer Science .. 9
2.1.1 System on a Chip (SOC) ... 9
2.1.2 Python Programming Language.. 9
2.1.3 LabVIEW ... 9
2.1.4 Pulse-width modulation (PWM) ... 10
2.1.5 Serial Peripheral Interface (SPI)... 10
2.1.6 Threads .. 12

2.2 PID control ... 12
2.2.1 P-term ... 13
2.2.2 I-term .. 13
2.2.3 D-term ... 14
2.2.4 Anti Windup ... 14
2.2.5 Tuning PID controller theory .. 15

3 Simulation .. 17

3.1 Analyze .. 17
3.2 Building the Mathematical Model .. 18

3.2.1 Energy Balance ... 18
3.2.2 Assumptions about the System .. 18
3.2.3 Differential equation ... 19

3.3 Developing Simulation in LabVIEW .. 19
3.3.1 LabVIEW Code for Simulating ... 19

3.4 Comparing Simulator to the Subsea Sensor System ... 21

4 Building Physical Prototype .. 23

4.1 Design Specifications... 23
4.2 Chosen Hardware ... 24

4.2.1 Raspberry Pi .. 24
4.2.2 Temperature sensor .. 25
4.2.3 Analogue to Digital Converter ... 25
4.2.4 Solid-State Relay and Transistor ... 26

4.3 Assembling the Prototype ... 27
4.3.1 Soldering the ADC .. 27
4.3.2 Control Signal Circuit ... 28
4.3.3 Heating compartment ... 29
4.3.4 Fitting Temperature Sensor ... 30
4.3.5 Fitting into Pressure Vessel ... 32
4.3.6 Connecting to Raspberry Pi ... 33
4.3.7 Closing the Pressure Vessel .. 34

 Contents

5

5 Developing Software PID .. 36

5.1 Application planning .. 36
5.1.1 FURPS .. 36
5.1.2 Use Case Diagram ... 37

5.2 Graphical User Interface (GUI) .. 38
5.3 Program Functionality .. 39

5.3.1 The Control Loop .. 39
5.3.2 Reading Temperature from the ADC ... 40
5.3.3 Converting Resistance to Temperature .. 41
5.3.4 PID Class .. 42

6 Testing and Tuning Prototype ... 43

6.1 Testing Anti Windup and Sample Time Values ... 43
6.1.1 Testing different Anti Windup Boundaries ... 43
6.1.2 Sample Time .. 45

6.2 Tuning PID on Simulation .. 46
6.3 Prototype Tuning .. 47

6.3.1 Disturbance in Environment test. .. 50

7 Conclusion and Future Works ... 53

7.1 Improving Simulation ... 53
7.2 Extending Prototype Software PID ... 53
7.3 Developing for the Real System .. 53

 1 Introduction

6

1 Introduction
The projects main goal is to develop a prototype software Proportional-Integral-Derivative

(PID) controller in a system on a chip (SOC) device, for temperature regulation in a subsea

sensor system. This task is provided by OCTIO. OCTIO works with geophysical monitoring

services for oil drilling operations, to ensure safe drilling without discharging into the

environment or other accidents. The system in focus already have temperature control by

using off-the-shelf industrial PID controllers. With a SOC device the size would deduct by

50%. Which is significant and of interest, since the system is often mobilized. Size and

weight deduction isn’t only beneficial for practical reasons, but also safety reasons. Detailed

description of what the subsea sensor system is comprised of will not be mentioned, since it’s

a secret OCTIO wants to keep.

1.1 Background

Commercial PID controllers often includes display and/ or rack mounts. Each of the

controllers need power modules. Furthermore, control and monitoring needs dedicated

communication channels, often ethernet, RS-232 or RS-485, which may add the need of

protocol converters. This is impractical for volume constrained subsea application, where

everything must be fitted into pressure vessels. It also could create the issue of too much self

heating from electronic components in warmer environments.

One example of a temperature regulated subsea sensor system is comprised by splitting the

sensor system and the control systems into multiple units, as shown in Figure 1-1. The aspect

of self-heating from electronic components, is handled this way. But, splitting the system into

several units also adds on the risk faulty wire connections, by needing connection between

the units as well as top side control system.

Figure 1-1: Subsea sensor system comprised of several units.

By implementing software PID controller the temperature regulated subsea sensor system can

be reduced to one unit, as shown in Figure 1-2. Which is advantageous for several reasons,

including the deduction of industrial components needed, but also transportation and easier to

handle when lowering it down into the ocean and up again. Also, it will reduce power

consumption and risk of wires to break.

 1 Introduction

7

Figure 1-2: Subsea sensor system comprised of one unit.

1.2 Objectives

The task description specifies development and implementation of a versatile and compact

PID temperature controller in a SOC device. With the following possible sub tasks gathered

from the task description in Appendix A:

1. Study and gain experience of a commercial PID controller in a “sample temperature

regulation system”.

2. Build a, somewhat simplified, mathematical model of the system, and use it to create

a realistic simulator of the temperature regulation system. Behavior can be compared

with data from real appliance.

3. Include a PID controller to the simulator.

4. Develop and implement a software PID controller on a microcontroller, with

comparable performance as the reference temperature controller.

5. Develop and implement a simple register based system for parameter setting, control

and monitoring.

6. Extend the system to an RTOS task (for integration into an existing software system).

7. Extend the system to comprise a multistage (cascade) PID controller.

1.3 Focus Areas

In dialogue with OCTIO, the tasks were prioritized as such; main goal is to develop a

physical prototype with software PID on a SOC device. With performance in temperature

stability verified for use in subsea sensor systems, +/- 0.1 °C. Extend it with a simple

graphical user interface for adjusting parameters and monitoring. Build a simulator and

extend it with PID control.

Programming language LabVIEW will be used for developing a simulation of the system and

Python for development of a functioning prototype software for testing. The controller

performance in temperature stability will be verified by testing performance in air and water,

and while submerging into water. Necessary research regarding hardware is essential before

any development of prototype can begin.

Challenges may be developing a simulator realistic enough to be able to use it for tuning PID

purposes. Also finding good PID parameters, since the systems environment will change

 1 Introduction

8

from air with temperatures up to around 26 °C to water with temperatures down to around -3

°C.

1.4 System description

System description is visualized in Figure 1-3, with functional and non-functional

requirements listed beneath.

Figure 1-3: System description

Functional requirements:

• Read temperature.

• Compute control signal.

• Displaying system variables.

• Temperature logging.

• Parameter setting.

Non-functional requirements:

• Temperature stability +/- 0.1 °C.

• Pulse width modulation.

• Programming languages:

o G (LabVIEW)

o Python

• Hardware:

o PT-100, 4- or 3-wire.

o 12 V Heat pads

o Solid-State Relay (for easier testing on real system)

1.5 Report structure

The report is divided into the following chapters:

- 1: Introduction

- 2: Research and theory

- 3: Simulation

- 4: Building Physical Prototype

- 5: Developing Software PID

- 6: Testing and Tuning Prototype

- 7: Conclusion and Future Works

 2 Research and theory

9

2 Research and theory
This chapter is about theory used to solve the task. Including principals, components and

programming languages in the field of computer science. As well as PID control theory and

needed understanding of Thermodynamics.

2.1 Computer Science

The following subchapter presents the needed knowledge about electrical components,

programming, communication protocols, signal modulation and process.

2.1.1 System on a Chip (SOC)

A system on a chip (SOC) is a small chip with all required electronic components and circuits

in a given system, for example a computer. It often comprised of an processor, memory and

some external interfaces for communication protocols, such as HDMI, USB and SPI. A

difference between a traditional PC and a SOC device is that the CPU, memory and other

components isn’t replaceable. All the components are integrated into one chip. [1]

SOCs are commonly divided into 3 types:

• SOCs built around a microcontroller.

• SOCs built around a microprocessor.

• SOCs designed for a specific purpose, which doesn’t fit into the 2 other categories.[1]

2.1.2 Python Programming Language

Python is an interpreted programming language where the syntax emphasizes readability. It

will be used in this thesis to create the software PID controller. The Python interpreter and

the standard library is open source software. In Python there is no compilation which makes

the edit, test and debug faster. If a bad input or a bug appears the Python interpreter will raise

an exception. Fallowed by printing its stack trace.[2]

2.1.3 LabVIEW

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is software for visual

programming in the language G. Which is the main difference to most other development

platforms. Predefined components can be added to the program using drag and drop from a

list. G is a dataflow programming language, e.g. it changes outputs depending on variables in

the program flow. The changes are reflected in real time. [3]

A LabVIEW program is called Virtual Instrument (VI) and a VI can be implemented inside

another VI. Two windows are used when programming in LabVIEW, Front Panel and Block

Diagram. The Front panel is the GUI, with components like indicators and controls, which is

outputs and controllable inputs. The Block Diagram window is where the program flow is

determined. An example of the two windows is shown in Figure 2-1, window to the left is the

Front Panel and to the right is the Block Diagram. [3]

 2 Research and theory

10

Figure 2-1: The two LabVIEW windows Front Panel, to the left, and Block Diagram, to the right.

2.1.4 Pulse-width modulation (PWM)

Pulse-Width Modulation (PWM) is a modulation with the width of an impulse. Where the

widths of the pulses correspond to specific data values. PWM operations is like a switch that

constantly rotates on and off, illustrated in Figure 2-2.

Figure 2-2: Three different pulse width signals.

2.1.5 Serial Peripheral Interface (SPI)

This subchapter is based on reference [4]. The SPI communication protocol will be used in

this thesis, for retrieving measurement data from an RTD temperature sensor amplifier with

ADC chip MAX31865. SPI is a synchronous serial communication interface for short

distance communication. SPI is full duplex, meaning both receiving and sending

simultaneously, using a master-slave architecture as shown in Figure 2-3.

Figure 2-3: Serial Peripheral Interface communication example.

CLK is clock generated by the master. MOSI stands for Master Output Salve Input and is data

output from the master. MISO is data output from the slave and stands for Master Input Slave

Output. CS is Slave Select, used for slave selection, it could be left out in a single master to

single slave circuit.

 2 Research and theory

11

The master and slave uses shift registers to shift data in Serial In Serial Out (SISO) mode.

Data transmission starts when the master configures the clock frequency. During each clock

cycle the master sends a bit on the MOSI connection and the slave reads it. Simultaneously,

the slave sends the master a bit over the MISO connection, as illustrated in Figure 2-4.

Figure 2-4: Two shift registers connected together forming a circular buffer.

The master sets the clock frequency for SPI data transfer, but clock polarity (CPOL) and

clock phase (CPHA) must also match with the slave. CPHA defines when to transfer data and

CPOL is the idle or active state of the clock. Clock Edge (CKE) is inverted clock phase.

Figure 2-5 shows a timing diagram representing a data transfer in a time domain containing

multiple rows.

Figure 2-5: SPI timing diagram for clock polarity and phase.[4]

CPOL equal to 0 means that the base value of clock is 0, e.g. idle state is 0 and active state is

1. If CPHA also is equal to 0 data transmissions occurs during 0 to 1 transitions. Different

SPI clock configurations are shown in Table 2.1.

Table 2.1: Different modes of SPI.

SPI MODE CPOL CPHA CKE

0 0 0 1

1 0 1 0

2 1 0 1

3 1 1 0

 2 Research and theory

12

2.1.6 Threads

A process can be divided into blocks of statements called threads, illustrated in Figure 2-6. It

is the smallest sequence of programmed instructions for the processor registers. A thread is

responsible for the execution of its block of statements. [5]

Figure 2-6: A process that is divided into 4 block statements called threads.

2.2 PID control

This chapter is about basic knowledge of PID control and based on reference [6]. Figure 2-7

shows how a closed loop control system uses feedback, to determine new output value. It

calculates the error value between the measured feedback, process variable, and the set point,

which is the desired value to achieve. Based on this error value the controller performs steps

to bring the output value closer to the desired set point.

Figure 2-7: Closed loop control system using feedback to steer the output value to the desired process variable,

which is the set point value.

PID controller is the most common control algorithm and is used in a closed control feedback

loop to regulate a process, for example temperature in tank by controlling heat elements. PID

stands for proportional-integral-derivative which is the three mathematical operations the

regulator performs, these are shown in Figure 2-8 and explained in more depth in the

following subchapters.

 2 Research and theory

13

Figure 2-8: PID controller is comprised of 3 terms, proportional, integral and derivative term.

There are variations of the PID algorithm, but the one used in this project is shown in

equation (2.1).

𝑢(𝑡) = 𝐾𝑝 𝑒(𝑡) + 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0

+ 𝐾𝑑

𝑑𝑒(𝑡)

𝑑𝑡

(2.1)

Where 𝑒(𝑡) is the error value, equation for calculating 𝑒(𝑡) shown in equation (2.2), and 𝑢(𝑡)

is the control signal to the actuator, also known as output value. 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑 is respectively

the coefficients for the proportional, integral and derivative terms, often denoted P, I and D

respectively. These coefficients, called gains, changes the error value through the controller

and generates new output value to the actuator, to bring the process value near set point. The

gain values are altered to find the optimal system response, this procedure is called tuning,

more about this in chapter 2.2.5.

𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡) (2.2)

Where the difference between set point, 𝑟(𝑡), and process variable, 𝑦(𝑡), accumulates to the

error value, 𝑒(𝑡).

2.2.1 P-term

A controller with only P-term, commonly called P-controller, has output value proportional to

the error value, since control value is error value multiplied by the proportional coefficient, as

shown in equation (2.3). That means, larger error, or larger 𝐾𝑝 value, gives larger output.

This type of controller has some drawbacks, for example never reaching set point in steady

state, because of small error value the controller output becomes negligible. E.g. even when

reaching steady state there is still error, an offset from set point, commonly called steady-

state error, shown in Figure 2-9. Another drawback is if 𝐾𝑝 value is too high, that will lead to

oscillation of process variable.

P-term = 𝐾𝑝 𝑒(𝑡) (2.3)

Figure 2-9: Steady-state error between set point and process variable, also called offset.

2.2.2 I-term

The I-term, shown in equation (2.4), eliminates offset. It accounts for past values of the error

value by integrating them from startup t = 0 to present time. I-term seeks to remove the

steady state error by adding control effect based on historic cumulative error value. I-term

 2 Research and theory

14

won’t stop changing the output value until the error value is 0. When the error value is 0, the

effect in output value is solely from the I-term.1

I-term = 𝐾𝑖 ∫ 𝑒(𝑡)𝑑𝑡
𝑡

0
 (2.4)

2.2.3 D-term

D-term, shown in equation (2.5), is a best estimate of the future trend of the error value,

based on its current rate of change. Using the D-term could allow for higher values for 𝐾𝑝

and 𝐾𝑖 whilst the loop is still stable, giving faster response and better loop performance.2 E.g.

the main purpose of D-term is improving the transient response. Though a problem with the

D-term is that it’s sensitive to noise. With a noise spike in measurement of process variable

the D-term will increase to compensate and furthermore make the control less stable.

D-term = 𝐾𝑑
𝑑𝑒(𝑡)

𝑑𝑡
 (2.5)

2.2.4 Anti Windup

Every actuator has a saturation limit, for example a valve cannot open more than 100% or

close less than 0%. Under normal circumstances these limits shouldn’t be reached. But say

there is a disturbance and the error value grow beyond the normal circumstances and the

output value maximum isn’t enough to compensate for this disturbance. It will cause the I-

term to accumulate over the time period to bring back process variable near to the set point

by integrating up the deviation so that the output value will increase and increase. Therefor

overshooting and continuing to increase as this accumulated error is growing, this is called

integral windup, see Figure 2-10. As a result, the output value may exceed the saturation

limits of the final control element, because of the I-term, and become unstable.

Figure 2-10: Example of how integral windup might affect the control system after a disturbance. With no

limitations on the I-term the peaks grow, and the system becomes unstable.

1 If it hasn’t manually been added effect.

2 Assuming good tuning for 𝐾𝑝, 𝐾𝑖 and 𝐾𝑑.

 2 Research and theory

15

Since windup is caused by the I-term, the solution is to clamp it. If only limiting output value,

the I-term will still grow too large, or low, and the windup problem will still be present.

There are different solutions to this problem, for example:

• setting error value equal to 0 when output value is at saturation limit.

• giving the I-term maximum and minimum values within saturation limits.

2.2.5 Tuning PID controller theory

Before tuning it is important to define performance requirements. This is often measured by

applying a step change in set point and then measuring the response of the process variable.

The response can then be evaluated by measuring defined waveform characteristics, as shown

in Figure 2-11. The definition of these quantities can vary from industry to academic.

Figure 2-11: Example of a PID-controlled closed loop response to a change in set point.

Figure 2-11 shows the names of the different waveform characteristics. Rise time is the time

from process variable goes from 10% to 90% of steady state. Overshoot is the amount the

process variable goes over, in positive y-direction, the process variable value in steady state.

The time required for the process variable to settle within bounds of the steady state process

variable value, for example +/- 5%, is called settling time. As mentioned in chapter 2.2.1, the

steady-state error is the offset between process variable and set point in steady state.

Deadtime is the delay from when the step change happens to when the process variable

change can be observed.

There are several methods created for tuning PID controller, these will not be discussed here.

Instead the characteristics of typical system response while tuning and the effects from

changing the different PID gains will be in focus. Table 2.2 shows trade-offs of how

individually changing the different PID coefficients typically affect the system response.

These correlations aren’t always accurate since each gain has an effect on each other, for best

performance all the coefficients must be tuned jointly.

Table 2.2 Possible effects of independently tuning the PID gains on a closed loop response.

 Rise time Overshoot Settling time Steady-state error Stability

 2 Research and theory

16

Increasing 𝐾𝑝 Decrease Increase Small increase Decrease Degrade

Increasing 𝐾𝑖 Small decrease Increase Increase Large decrease Degrade

Increasing 𝐾𝑑 Small decrease Decrease Decrease Minor change Improve

Some typical damped system responses are unstable, critically damped, under-damped and

over-damped, these are shown in Figure 2-12. Unstable systems produce an oscillation

diverging step response, this kind of system won’t settle down. An under-damped system has

an oscillating response as well, but in this case, it eventually dampens out, unlike the unstable

system. Over-damped system is characterized by long rise and settling time, but no

overshoot. A critically damped system response is a compromise of response time and

damping effects. It has shorter rise and settling time compared to over-damped system, but

longer peak time in comparison with under-damped system.

Figure 2-12: System damping examples.

Loop cycle is also an important parameter of a closed system. It is the time interval between

each call to the PID-controller, also sometimes called cycle time or sample time. This

depends on the system to be controlled, if it changes quickly a fast loop cycle is required, or

the system will become unstable. If the loop cycle is very fast, it isn’t usually a problem, but

it could make the D-term be essentially just noise.

 3 Simulation

17

3 Simulation
This chapter is developing a simulation of the temperature behavior in the subsea sensor

system. By analyzing the system, building a mathematical model, calculating constants,

creating simulation software in LabVIEW and comparing with the real systems behavior. The

calculated values describing the system will not be presented, since OCTIO do not wish to

have them openly available. However formulas used to find these values will be mentioned.

3.1 Analyze

The system, shown in Figure 3-1, has a cylindrical shaped pressure vessel defining the

boundaries. Inside there are multiple layers of solids and fluids before reaching the inner area.

The system is completely sealed, so that the system isn’t affected by pressure changes in

surroundings. However, what does affect the system is environment temperature, which is the

main disturbance and is why a controller is needed. The compartment connected to the

heating element is the actuator for the controller and is denoted heating compartment.

The subsea sensor system, in addition to have changes in environment temperature, have

change in environment medium. It will go between air and water, which has different heat

transfer coefficients. Water transfers heat faster than air. For the environment this system is

used the water environment will usually also have lower temperatures than when in air

surroundings. For the real system, internal temperature will stabilize around 8.7 °C for

environment water temperature of 4 °C. While the internal temperature would rise to around

30 °C in environment air of 25 °C, which means it isn’t linear [7].

Figure 3-1: Cross-section of the subsea sensor system.

 3 Simulation

18

3.2 Building the Mathematical Model

This subchapter is based on reference [8]. The goal is to create a differential equation which

calculates the temperature inside the system, based on disturbance from environment

temperature and medium, as well as effect from heating compartment and self heating from

electric components. E.g. the energy balance for thermodynamic systems is a good starting

point, which is elaborated in following subchapter.

3.2.1 Energy Balance

Balance law for thermodynamic systems gives the energy balance shown in equation (3.1).

Time argument is excluded in this subchapter for simplicity reasons.

𝑑𝐸

𝑑𝑡
= ∑ 𝑄𝑖𝑛 − ∑ 𝑄𝑜𝑢𝑡 + ∑ 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 (3.1)

The energy balance deriving will be based on assumptions and equations representing energy

inputs and outputs presented in following subchapter.

3.2.2 Assumptions about the System

Energy is assumed to be proportional with temperature and volume, as seen in equation (3.2).

𝐸 = 𝑐𝜌𝑉𝑇 (3.2)

Where c is specific heat capacity of the system [J/kg K], 𝜌 is the density of the system

[kg/m3], V is volume of the system [m2] and T is temperature inside the system [K].

Qin in the energy balance is representing the added effect. This can be divided into effect

from electrical components, denoted 𝑃𝑐, and effect added from heating compartment, when

temperature control is implemented, denoted 𝑃𝐻𝑃, as shown in equation (3.3).

Also assuming, that there is no storage of energy in the heating element, which means the

effect added to heat element is added directly to the system. Therefor it isn’t necessary to

derive an own energy balance for the heat pads.

𝑄𝑖𝑛 = 𝑃𝑐 + 𝑃𝐻𝑃 = 𝑃𝑖𝑛 (3.3)

Where 𝑃𝑖𝑛 is the accumulated heat effect added. Heat loss is denoted 𝑄𝑜𝑢𝑡, as shown in

equation (3.4).

𝑄𝑜𝑢𝑡 = 𝑈[𝑇𝑒𝑛𝑣 − 𝑇] (3.4)

Where U is the overall heat transfer [J/s m2K] or [W/m2K]. Expression for U can be derived

from equation for thermal resistance shown in equation (3.5).

𝑅𝑡𝑜𝑡 =
1

𝑈
 (3.5)

By multiplying with U on both sides and then dividing by 𝑅𝑡𝑜𝑡, U is alone on left-hand side,

shown in equation (3.6).

𝑈 =
1

𝑅𝑡𝑜𝑡
 (3.6)

Inserting equation (3.6) into equation (3.4) gives equation (3.7) to describe heat loss.

 3 Simulation

19

𝑄𝑜𝑢𝑡 =
𝑇𝑒𝑛𝑣 − 𝑇

𝑅𝑡𝑜𝑡
 (3.7)

There is no energy generation, no chemical reaction etc. In other words, 𝑄𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑 can be

neglected from the energy balance, as shown in equation (3.8).

𝑑𝐸

𝑑𝑡
= ∑ 𝑄𝑖𝑛 − ∑ 𝑄𝑜𝑢𝑡 (3.8)

3.2.3 Differential equation

The energy balance can now be written as shown in equation (3.9), based on assumptions and

expressions from previous subchapter.

𝑑(𝑐𝜌𝑉𝑇)

𝑑𝑡
= 𝑃𝑖𝑛 −

(𝑇 − 𝑇𝑒𝑛𝑣)

𝑅𝑡𝑜𝑡
 (3.9)

Assuming constant volume, density and specific heat capacity they can be moved out of the

derivation as shown in equation (3.10).

𝑐𝜌𝑉
𝑑𝑇

𝑑𝑡
= 𝑃𝑖𝑛 −

(𝑇 − 𝑇𝑒𝑛𝑣)

𝑅𝑡𝑜𝑡
 (3.10)

Which leads to a differential equation, shown in equation (3.11), for temperature inside the

subsea sensor system, which can be used for simulation.

𝑑𝑇

𝑑𝑡
=

1

𝑐𝜌𝑉
[𝑃𝑖𝑛 −

1

𝑅𝑡𝑜𝑡

(𝑇 − 𝑇𝑒𝑛𝑣)] (3.11)

The differential equation has three time dependent parts:

• the internal temperature, T.

• the environmental temperature, 𝑇𝑒𝑛𝑣.

• added power, 𝑃𝑖𝑛.

3.3 Developing Simulation in LabVIEW

This chapter is about developing the LabVIEW simulation of the subsea sensor. It will

include code and functionality.

3.3.1 LabVIEW Code for Simulating

Figure 3-1 shows how the differential equation is comprised in the Block Diagram window.

Inside the frame in the lower left corner its created a logic to use either RTot for water

environment or air. This is automatically chosen based on environment temperature. If

environment temperature is over 15.5 °C it will use RTot for air.

In Figure 3-2 the PID algorithm made in a Formula Node is shown. The output of the PID

controller is scaled to a PWM signal using logic shown in Figure 3-3. How the whole

program is connected inside a Control and Simulation loop can be seen in Figure 3-4.

 3 Simulation

20

Figure 3.1: LabVIEW code of the differential equation.

Figure 3-2: PID controller made using Formula Node in LabVIEW.

 3 Simulation

21

Figure 3-3: Scaling output of the PID to a PWM signal.

Figure 3-4: The complete Block Diagram view of the LabVIEW program.

3.4 Comparing Simulator to the Subsea Sensor System

This chapter is about comparing simulator to the real subsea sensor systems temperature

behavior with respect to environment temperature. The values representing the real subsea

sensor was approved for sharing by OCTIO.

Figure 3-5 shows the simulator responding to step response in environment temperature. The

first step is from 25 °C to 4 °C, the second is from 4 °C back to 25 °C. From the graph it can

be read that temperature inside the system in 25 °C environment air stabilizes on 30 °C. It can

also be read that it stabilizes on 8.7 °C in environment of 4 °C.

Figure 3-5: Simulator responding to step response in environment temperature.

 3 Simulation

22

The simulated temperature response curve is also of similar shape the real system. For

example, with the step response from 25 °C to 4, the curve slowly decreases in the beginning.

Then it decreases very fast until slowly converging into steady-state.

 4 Building Physical Prototype

23

4 Building Physical Prototype
This chapter is about designing and building a prototype subsea sensor system with control

system on a Raspberry Pi. It is comprised of materials lying around and commercial available

electronic components. The software PID controller is developed using Python programming

language.

4.1 Design Specifications

Figure 3-1 shows the subsea sensor system that will be made a prototype of. By using

materials at hand combined with available industrial electronic components. For water proof

housing it was found a spare pressure vessel, of different dimensions than the real appliance.

Which is ideal since it will have similar heat transfer values. The heating compartment will

be represented by a soda can, as shown in Figure 4-1, with three available heat pads glued to

it. Temperature sensor will be placed in the middle of the soda can. The different layers

between pressure vessel and heating compartment will be represented by a layer of insulation

and air. The internal heating from electrical components will not be represented in the

prototype.

Figure 4-1: Prototype of subsea sensor system.

The available heat pads are 12 V with 7.5 Watts (W) and will need 1.875 Ampere (A) when

connected in parallel, as shown in equation (4.1). Which is more than the Raspberry Pi can

provide with its outputs for 3.3 V and 5 V. To generate this signal, it will be utilized a

laboratory power supply. The voltage will be sent through a relay which is to be controlled by

the Raspberry Pi. An analogue to digital converter (ADC) is needed to read the temperature

sensor using Raspberry Pi. Overview of prototype with subsea sensor system and control

system can be seen in Figure 4-2.

𝐼 =
𝑉

𝑃
→ 𝐼 =

12 𝑉

7.5 + 7.5 + 7.5 𝑊
= 1.875 𝐴 (4.1)

 4 Building Physical Prototype

24

Figure 4-2: Prototype of subsea sensor system with control system.

4.2 Chosen Hardware

This subchapter is about hardware chosen to be used in the prototype system.

4.2.1 Raspberry Pi

Raspberry Pi, shown in Figure 4-3, is a single-board computer capable of running different

types of OS. It has a Broadcom SOC, including an ARM compatible central processing unit

(CPU) and graphics-processing unit (GPU). All storage is on an external micro SD card. [9]

Figure 4-3: Raspberry Pi. [10]

It’s chosen to use the third generation Raspberry Pi, Raspberry Pi 3 Model B, which has WI-

FI and Bluetooth module integrated. It has 40 General-purpose input/output (GPIO),

UART, I2C and SPI support. Specifications are shown in Table 4.1.

Table 4.1: Raspberry Pi 3 Model B technical specifications. [10]

SOC Broadcom BCM2837

CPU 64-bit quad-core, 1.2 GHz ARM Cortex-A53

GPU Dual core Videocore IV® Multimedia co-processor

RAM 1 GB LPDDR2

Wireless connection 802.11 b/g/n 2.4 GHz Wireless LAN and Bluetooth 4.1

 4 Building Physical Prototype

25

GPIO 40-pins

Ports 1 x 10/100 Ethernet port, 1 x HDMI video/audio connector, 1 x

RCA video/audio connector, 1 x CSI camera connector, 4 x

USB 2.0 ports

Storage Micro SD card

Power Micro USB connector for 2.5 A power supply

4.2.2 Temperature sensor

The PT-100 temperature sensor chosen is shown in Figure 4-4, it’s a 4-wire platinum

resistance temperature detector (RTD). PT-100 also comes with 2- or 3-wires which has less

accuracy, since the 4-wire connection eliminates the influence of the connection lead on the

measuring result [11]. It is class A in accuracy, meaning it will be +/- 0.23 °C in temperature

range -40 to 40 °C, compared to class B RTDs which is +/- 0.5 °C in the same range [12]. For

more information about the sensor, see reference [13].

Figure 4-4: RS Pro PT100 Sensor

4.2.3 Analogue to Digital Converter

Instead of a regular ADC it was chosen to use PT100 RTD amplifier, shown in Figure 4-5,

with internal ADC. Adafruit PT100 RTD Temperature Sensor Amplifier, MAX31865, is

designed to read the low resistance and automatically adjust and compensate for the

resistance of the connecting wires, which gives higher accuracy for temperature readings.

[14]

Figure 4-5: Adafruit PT100 RTD Temperature Sensor Amplifier MAX31865. [15]

 4 Building Physical Prototype

26

MAX31865 can be read using SPI connection. It could be connected to Raspberry Pi is

shown in Figure 4-6. ADC resolution for MAX31685 is 15 bit, which in nominal temperature

resolution is 0.03125 °C.[16] For more information about MAX31865 see datasheet in

reference [16]. MAX31865 will from here be referred to as ADC.

Figure 4-6: Connection between MAX31865 and Raspberry Pi.

4.2.4 Solid-State Relay and Transistor

The relay chosen to control the 12 V signal, Crydom Solid-State Relay (SSR) DC60S7, is

shown in Figure 4-7. SSRs are fully electronic, there is no moving parts inside. They are

fundamentally like other relays, there is complete electrical isolation between their low

voltage input and, potentially high, voltage output contacts. The output is like an electrical

switch, by having very high resistance when open, and a very low resistance when closed.

Advantages with SSR is, among others, that it has fast response time and have high life-time

expectancy.[17]

Figure 4-7: Crydom DC60S7 Solid-State Relay. [18]

The chosen SSR has minimum turn on voltage at 3.5 V[19]. The Raspberry Pi GPIOs output

is 3.3 V, which isn’t enough to turn on the SSR. Instead by using an NPN transistor, 1K Ω

resistor, Raspberry Pi 5 V output DC power source and 3.3 V GPIO as shown in Figure 4-8,

 4 Building Physical Prototype

27

the control signal is 5 V. For more information about Crydom DC60S7 see datasheet in

reference [19].

Figure 4-8: Wiring to generate a 5 volts control signal from Raspberry Pi, using NPN transistor and 1K Ω

resistor.

4.3 Assembling the Prototype

This chapter is about assembling the physical prototype with the parts mentioned in previous

subchapter. It includes soldering, electrical wiring, with testing of connections and circuit

logic, as well as fitting it into the pressure vessel.

4.3.1 Soldering the ADC

The ADC came without the headers connected to the terminal block. To secure good

connection these had to be soldered, as shown in Figure 4-9. The soldering where verified by

connecting the amplifier to the temperature sensor and Raspberry Pi, as shown in Figure

4-10. Then run a test program on the Raspberry Pi to read the temperature. The temperature

read was compared to another verified temperature sensor. This verified the soldered

connections and that the amplifier and temperature sensor was working properly.

 4 Building Physical Prototype

28

Figure 4-9. Soldering headers to the terminal block on the RTD temperature sensor amplifier.

Figure 4-10: Raspberry Pi connected to the amplifier, which is attached to the PT100 temperature sensor.

4.3.2 Control Signal Circuit

The circuit for generating 5 V control signal using NPN transistor and a resistor was wired

and was tested by measuring voltage across the SSR, as shown in Figure 4-11. The voltmeter

reads 5.113 V when the GPIO pin is set high, as shown in Figure 4-12, and around 0 V when

GPIO pin is set low. The circuit performance was concluded satisfactory, control signal of a

little over 5 V isn’t an issue when SSRs max control input is 32 V [19].

 4 Building Physical Prototype

29

Figure 4-11: Electric circuit of how the voltmeter is connected to the control signal circuit, to read voltage

across the SSR.

Figure 4-12: Voltmeter reading voltage across the SSR.

4.3.3 Heating compartment

The three available heat pads are silicone heater pads and will be glued to the soda can,

around its circumference, to provide homogenous heating, as shown in Figure 4-13.

 4 Building Physical Prototype

30

Figure 4-13: Three heat pads glued to a soda can.

There is used two 5-way conductors to connect the heat pads in parallel, shown in Figure

4-14. One of the conductors is connected to the output of the SSR, with the 12 V signal. The

other is connected to ground, as shown in Figure 4-15. The circuit was verified by sending

the 12 V through the SSR and then physically feeling the heating effect of each heat pad.

Figure 4-14: 5-way conductor connected to the three heat pads positive side.

Figure 4-15: Three heat pads connected in parallel with a 12 V signal controller by a SSR.

4.3.4 Fitting Temperature Sensor

The temperature sensor will be located inside the soda can which will be placed inside the

pressure vessel, as shown in Figure 4-1. The sensor is taped to wooden chopsticks to keep it

approximately in the middle of the soda can, as shown in Figure 4-16.

 4 Building Physical Prototype

31

Figure 4-16: Temperature sensor taped to wooden chopsticks.

The chopsticks are put into the soda can through its opening, with a skew angle, all the way

to the bottom. The chopsticks are taped to the soda can to secure the angle, as shown in

Figure 4-17. Insulation material is then fitted into the soda cans opening, to ensure that heated

air won’t escape easily, as shown in Figure 4-18.

Figure 4-17: The chopsticks are taped to the soda can so it won’t move.

 4 Building Physical Prototype

32

Figure 4-18: Insulation material is fitted into the soda cans opening, to ensure that heated air won’t escape

easily.

4.3.5 Fitting into Pressure Vessel

The soda can, with heat pads and temperature sensor, is fasten to metal rods connected to the

pressure vessel lid with bundling strap and tape, as shown in Figure 4-19. The cables for the

heating circuit is strapped in the bottom, securing its location while going into the pressure

vessel. All cables out of the pressure vessel needs to go through a, already existing, rubber

tube in the lid, shown in Figure 4-20, to keep it waterproof.

Figure 4-19: The insides of the physical prototype subsea sensor system.

 4 Building Physical Prototype

33

Figure 4-20: There are two rubber tubes in the lid of the pressure vessel where all the cables must go through, to

keep it water proof.

Since the system will be moved around for testing in different environments, the temperature

sensors cable is fitted with a connector, at outside end of the rubber tube, as shown in Figure

4-21. This way it can easily be detached from the amplifier and moved without unscrewing

the cables from the terminal.

Figure 4-21: Fitting temperature sensor cables into a connector for easy detachment.

4.3.6 Connecting to Raspberry Pi

Table 4.2 and Table 4.3 presents how the Raspberry Pi is connected to RTD temperature

sensor amplifier and the control signal circuit respectively, based on the Raspberry Pi pinout

overview shown in Figure 4-22.

Table 4.2: Raspberry Pi pin connection to RTD temperature sensor amplifier MAX31685.

Raspberry Pi 3 Model B MAX31685

Pin name: Pin number: Name:

3.3v DC Power 01 VIN

Ground 06 GND

GPIO11 (SPI_CLK) 23 CLK

GPIO09 (SPI_MISO) 21 SDO

GPIO10 (SPI_MOSI) 19 SDO

GPIO08 (SPI_CE0_N) 24 CS

 4 Building Physical Prototype

34

Table 4.3: Raspberry Pi pin connection to the control signal circuit.

Raspberry Pi 3 Model B Component

name:

Transistors

connection side:
Pin name: Pin number:

5v DC Power 02 SSR Collector

GPIO17 (GPIO GEN0) 11 Resistor Base

Ground 39 Emitter

Figure 4-22: Pinout of Raspberry Pi 3. [20]

4.3.7 Closing the Pressure Vessel

Then the lid, containing all the components, is put into the pressure vessel. The complete

physical prototype of the subsea sensor system is shown in Figure 4-23.

 4 Building Physical Prototype

35

Figure 4-23: The physical prototype subsea sensor system.

 5 Developing Software PID

36

5 Developing Software PID
This chapter is about the pre-preparation of the software development and the finished

application. Presenting the planning techniques as well as snippets of the code.

5.1 Application planning

This chapter presents the basic ideas for the program and the following subchapters shows the

planning drafts in the startup phase of software development. By using the planning tools

FURPS and Use Case Diagram.

System overview is shown in Figure 5-1. The PID application retrieves parameters from the

GUI and sends process status to it. It also reads information from the process and writes new

control signal to the process.

Figure 5-1: System overview from GUI to the application to the process.

Figure 5-2 explains the different components to be connected to the system. For information

about the Control signal circuit, Subsea sensor system and ADC see chapter 4.

Figure 5-2: System overview of main components in the prototype subsea sensor software PID control system.

5.1.1 FURPS

FURPS is a model for classifying the functionality and requirements of a software program

and is short for Functionality, Usability, Reliability, Performance and Supportability.[21] The

FURPS is developed based on the task description and cooperation with external supervisors

from OCTIO. The FURPS focus is on functionality and usability and it is shown in Table 5.1.

 5 Developing Software PID

37

Table 5.1: FURPS

F: Read Temperature: Establish connection to ADC. Retrieve temperature

information from ADC using SPI.

Activate Heating: Sets correct GPIO high, using GPIO library, to activate the SSR.

PID controller: Regulating heating based on temperature readings.

Monitor and Alter: Monitoring temperature and controller output and alter PID

parameters.

U: Application Language: English.

System: Raspbian.

Displaying current temperature, controllers output, sample time and PID

parameters.

R: Running for several days.

P: Performance in temperature stability.

S: -

5.1.2 Use Case Diagram

A Use Case Diagram, shown in Figure 5-3, is created to visualize the functionality described

in the FURPS. It describes how the different system parts are connected.

Figure 5-3: Use Case diagram for the PID controller software.

The User is a person with access to the system. User is connected to Monitor and Alter where

it’s possible to view current temperature and controller output. By receiving those values

from the PID controller connection to Monitor and Alter. This connection also gives the User

possibility to adjust the PID parameters.

PID controller is connected to Read Temperature where temperature information is retrieved

from the ADC using SPI. It’s also connected to Activate Heating, which turns on the SSR

controlling the power to the heat pads.

 5 Developing Software PID

38

5.2 Graphical User Interface (GUI)

The GUIs main purpose is give an easy way to adjust control parameters and to monitor the

process. Instead of changing the code between tests and reading temperature values from the

Terminal window. All the applications functionalities are gathered on one page, shown in

Figure 5-4.

Figure 5-4: The applications Graphical User Interphase.

The three topmost text fields, Temp, u_time and u %, are read only showing temperature,

controller output in time [s] and percent respectively. They are from here denoted text output

fields. The other text fields are for adjusting PID parameters and are denoted text input fields.

They are updated during the startup procedure with values from a Comma Separated Values

(CSV) config file containing initial values. Except from at startup, they are solely change

according to user input. The functionality of the buttons is explained in Table 5.2. By clicking

the x in the topmost right corner, the application shuts down securely with a shutdown

procedure.

Table 5.2: Functionality of the buttons in the GUI.

Name: Functionality:

Update sample time Reads the text input field Sample time and sets the systems sample

time variable equal to this value.

Save as initial values Reads all text input fields and saves these to a CSV config file.

Update SP Reads the text input field SP and sets the systems set point variable

equal to this value.

Update all Reads all text input fields and sets the systems respective variable

equal to its counterpart text field value.

Reset PID to initial

values

Updates all text input fields with values from a CSV config file.

 5 Developing Software PID

39

5.3 Program Functionality

This chapter will explain the main functionalities of the application and includes some

snippets of the code. For full code see APPENDIX

5.3.1 The Control Loop

The control loop is started in a separate thread, before initializing the GUI. The control loop

functionality is explained in Figure 5-5. The control loop is a while loop inside a method

called control_loop(). It has its own start up procedure, initializing variables and creating new

CSV file for measurement data. With a unique filename of the current date and time, securing

no overwrite of measurement data.

Figure 5-5: The functionality for the control loop.

The control loop is controlled by a global Boolean variable named RunProgram. As long as

RunProgram is equal to TRUE the control loop continues its cycle. The control loop is

enclosed by a try-finally statement, to secure proper shutdown, e.g. turning of heating. This is

shown in Figure 5-6. A finally clause is always executed before leaving the try statement. To

visually verify that the application is shut down properly it is printed “### PROPER

SHUTDOWN ###” in the Raspberry Pi terminal.

 5 Developing Software PID

40

Figure 5-6: The try-finally statement that enclosuses the While Loop, to secure proper shutdown.

5.3.2 Reading Temperature from the ADC

For reading temperature there is created a class called ADC, this class is based on code found

in reference [22]. A code snippet of the method, inside the ADC class, for reading

temperature with return value is showed in Figure 5-7. The steps of this method is illustrated

in Figure 5-8. In step 1 sets the clock frequency. Step 2 is the shift register data exchange.

Step 3 is converting reading from Ω to °C, this formula is explained in the following

subchapter. Last step, step 4 is returning the temperature value. If its detected cable faults

when reading the temperature, an error message describing the cable fault will be printed in

the Terminal before properly shutting down.

Figure 5-7: Snip of code from readTemp method in the ADC class.

 5 Developing Software PID

41

Figure 5-8: The steps for reading temperature.

5.3.3 Converting Resistance to Temperature

This subchapter is based on reference [16]. For converting the resistance to temperature, the

Callendar-Van Dusen equation, shown in equation (5.1), can be used. The resistance vs

temperature curve isn’t completely linear, which the Callendar-Van Dusen equation

describes. A straight-line approximation would give error 0 °C at 0 °C, but for 100 °C the

error is -1.4 °C and error -1.75 °C for temperature -100 °C.

𝑅(𝑇) = 𝑅0(1 + 𝑎 𝑇 + 𝑏 𝑇2 + 𝑐 (𝑇 − 100)𝑇3 (5.1)

Where T is temperature in °C, R(T) is resistance at T and 𝑅0 is resistance at T equal to 0 °C.

The Callendar-Van Dusen coefficients value are shown in equation (5.2).

𝑎 = 3.90830 ∙ 10−3

𝑏 = −5.77500 ∙ 10−7

𝑐 = 0 𝑓𝑜𝑟 0° 𝐶 ≤ 𝑇 ≤ 850°𝐶 𝑎𝑛𝑑

𝑐 = −4.18301 ∙ 10−12 𝑓𝑜𝑟 − 200° 𝐶 ≤ 𝑇 ≤ 0°𝐶

 (5.2)

Callendar-Van Dusen solved for temperature, in the range 0 to 850 °C, is shown in equation

(5.3).

𝑇 = (−𝑅0 ∙ 𝑎 +
((𝑅0 ∙ 𝑎)2 − 4 ∙ 𝑅0 ∙ 𝐵 ∙ (𝑅0 − 𝑅(𝑇)))

1
2

2
∙ 𝑅0 ∙ 𝐵 (5.3)

R(T) is found by using equation (5.4).

 5 Developing Software PID

42

𝑅(𝑇) =
𝐴𝐷𝐶𝑐𝑜𝑑𝑒 ∗ 𝑅𝑟𝑒𝑓

𝐹𝑆 − 𝐴𝐷𝐶𝑐𝑜𝑑𝑒
 (5.4)

Where 𝐹𝑆 is the ADC’s full-scale code, 𝐴𝐷𝐶𝑐𝑜𝑑𝑒 is the ADC’s output code and 𝑅𝑟𝑒𝑓 is the

reference resistor. For temperatures under 0 °C the straight-line approximation will be used,

as shown in equation (5.5).

𝑇 = (
𝐴𝐷𝐶𝑐𝑜𝑑𝑒

32
) − 256 (5.5)

5.3.4 PID Class

The PID class is based on the PID code in reference [23]. Figure 5-9 shows the code for the

method with the PID algorithm. For explanation of the algorithm see chapter 2.2. This

method is called each Control loop with an updated temperature value. There is implemented

Anti Windup by keeping the I-term within maximum and minimum values. By using if and

and elif, else if, statements to check if I-term is crossing these limits. For example if the I-

term exceeds the upper limit, it is sat equal to the upper limit. The output_value is as well

checked and if it has outside the saturation limits it will be sat equal to the respective

saturation limit it has breached.

Figure 5-9: Snippet of the PID algorithm code.

 6 Testing and Tuning Prototype

43

6 Testing and Tuning Prototype
This chapter will present PID tests on the simulator and on the prototype. The tests are

conducted to find the PID parameters which will provide the best performance in temperature

stability.

6.1 Testing Anti Windup and Sample Time Values

In the following subchapters different Anti Windup and Sample Time values will be tested

and compared.

6.1.1 Testing different Anti Windup Boundaries

The tests were conducted in an air environment of 25 °C. During the tests of different anti

windup boundaries all other parameters were kept constant, these can be seen in Table 2.1.

The test results are shown in Figure 6-1, Figure 6-2, Figure 6-3 and Figure 6-4, where the anti

windup upper limit was decreased between each test. In the controller output is shown as a

blue line rising from the bottom. From the figures it can be seen that the first test is the only

one standing out. It has longer time between peak values, as well as larger overshoot and a

larger undershoot.

From the plots it can also be seen a trend, that the lower upper anti windup saturation limit

gives higher frequency in the control signal oscillation. It’s decided to go forward with anti

windup boundaries from 0 to 80, presented in Figure 6-3, since that was the one keeping

closest to Set Point.

Table 6.1: Constant PID parameters during Anti Windup boundary test.

PID Parameter: Value

𝐾𝑝 0.2

𝐾𝑖 1.7 [s]

𝐾𝑑 0.000001 [s]

Set Point 31°C

Sample Time 0.5 [s]

 6 Testing and Tuning Prototype

44

Figure 6-1: Windup boundary test 1, with saturation limit from 0 to 180.

Figure 6-2: Windup boundary test 2, with saturation limit from 0 to 100.

Figure 6-3: Windup boundary test 3, with saturation limit from 0 to 80.

 6 Testing and Tuning Prototype

45

Figure 6-4: Windup boundary test 4, with saturation limit from 0 to 30.

6.1.2 Sample Time

The test was done in air environment at around 25 °C. During the tests of different sample

times all other parameters were kept constant, these can be seen in Table 6.2: Constant PID

parameters during Sample Time test.Table 6.2. The tests are presented in Figure 6-5, Figure

6-6 and Figure 6-7 with Sample Time values 0.25 [s], 0.5 [s] and 1 [s] respectively. The

performance in temperature stability is equal for all the values tested. It was decided to use

Sample Time equal to 0.5 [s].

Table 6.2: Constant PID parameters during Sample Time test.

PID Parameter: Value

𝐾𝑝 0.2

𝐾𝑖 1.7 [s]

𝐾𝑑 0.000001 [s]

Set Point 31°C

Anti Windup 0 to 80

Figure 6-5: Sample Time test 1, with Sample Time equal to 0.25 [s].

 6 Testing and Tuning Prototype

46

Figure 6-6: Sample Time test 2, with Sample Time equal to 0.5 [s].

Figure 6-7: Sample Time test 3, with Sample Time equal to 1 [s].

6.2 Tuning PID on Simulation

Simulation was tuned using Try and Error method. Started with an initial guess of Kp equal to

0.1 and Kd equal to 0.000001. Also using the values for Anti Windup and Sample Time found

previously. There were systematically tried different values for Ki in a Set Point step response

from 26 °C to 31 °C. Environment temperature was set to 25 °C and self heating variable Hc

was sat to 0. Since the prototype doesn’t have any self heating from electrical components.

After settling on a Ki equal to 0.2, Kp was systemically tested and so on Kd. PID parameters

found was Kp equal to 0.1, Ki equal to 0.2 and Kd equal to 0.001. The simulated step response

with these parameters is shown in Figure 6-8.

 6 Testing and Tuning Prototype

47

Figure 6-8: Step response in Set Point from 26 to 31 on Simulation.

6.3 Prototype Tuning

The PID parameters found for PID on the simulation is tested on the prototype under similar

conditions. Set Point step response from 26 °C to 31 °C in air environment at 25 °C. The

results are presented in Figure 6-9 and is not providing satisfactory temperature stability.

Figure 6-9: Simulation tuned PID parameters tested on prototype by step response in Set Point from 26 °C to 31

°C. The test is conducted in air environment at 25 °C.

Further testing was done by doing step response Set Point in 25 °C air, 3 °C water and air 0

°C. Temperature stability during a change in environment from air 25 °C to water 3 °C and

from air 25 °C to air 0 °C. PID parameters found was Kp equal to 30, Ki equal to 0.5 and Kd

equal to 0.1. A set point step response with these parameters in environment 0°C is shown in

Figure 6-10.

 6 Testing and Tuning Prototype

48

Figure 6-10: Step response 0°C environment.

Before reaching the parameters, shown in the figure above, it was conducted an environment

disturbance test from air to water 3 °C shown in Figure 6-11. The parameters in this test was

Kp = 30, Ki = 0.29 and Kd = 0.01. It’s pretty obvious after making the plot in excel that it

converges into a steady-state error but it wasn’t noticed from the LivePlot. Therefor these

 6 Testing and Tuning Prototype

49

parameters were further tested in air environment of 0 °C, were the steady-state was clearer

as shown in Figure 6-12.

Figure 6-11: Disturbance test, from air 25 °C to water 3 °C. Changes at grey line.

Figure 6-12: PID parameter test in 0 °C air environment.

 6 Testing and Tuning Prototype

50

6.3.1 Disturbance in Environment test.

A last test with environment change every 12 minutes over 3 hours timespan was conducted,

as shown in Figure 6-14. The test is based on heat loss development from a test shown in

Figure 6-13. The environment was changed between air 22 °C to air 0 °C. Initial system

temperature was 22.6 °C. The test was started by putting the prototype into air 0 °C from air

22 °C. The performance of temperature stability was +/- 0.1 °C. The first 15 minutes of the

test is shown in Figure 6-15. The error compared with environment change is shown in

Figure 6-16, worth mentioning that the largest error peak is confirmed as noise. The other 2

peaks are probably also noise but needs more data to confirm, or implement a filter and see if

it still occurs. Figure 6-17 shows the correlation between environment change and control

signal.

Figure 6-13: Heat loss development from 31 °C internal temperature, in 0 °C air environment. Conducted by

turning off heating after being stable at 31 °C.

Figure 6-14: Prototype PID parameter test, by every 12 minutes changing between air 22 °C to air 0 °C. The test

was conducted over 3 hours. The environment temperature is showed in red and is collected at time the change

occurs.

 6 Testing and Tuning Prototype

51

Figure 6-15: The first ~15 minutes of the test.

Figure 6-16: Error from setpoint compared with sampled environment temperature.

 6 Testing and Tuning Prototype

52

Figure 6-17: Control signal versus environment temperature.

 7 Conclusion and Future Works

53

7 Conclusion and Future Works
Developed software PID system worked as intended and proved good performance in

temperature stability compared for subsea application. But before actual implementation more

test would be needed.

The Raspberry Pi 3 as a SOC device for software PID implementation worked as intended. The

ADC worked as intended.

The building of a Physical prototype subsea sensor system was as intended.

The simulation wasn’t good enough to be used for tuning, but there was correlation to the real

application, so it might be a good starting point.

7.1 Improving Simulation

Heat response is very fast. Adding some sort of delay to the heat added (P_in) might solve

this. Another possible solution is to use known data from real application as parameters A, B

and C, since it simulation of a differential equation. E.g. : A x + B u + C.

7.2 Extending Prototype Software PID

• More water tests to confirm performance in temperature stability.

• Test software PID on real subsea sensor system.

• Extend to Cascade control system.

• Activate plot from GUI.

• Improve error handling. Only handling the most probable and important, errors at this

moment.

• Add a measurement filter.

• Clean up and improve code. To increase computational speed and readability.

7.3 Developing for the Real System

Since C++ is needed for the real system, the options are:

• Manually convert Python to C++. E.g. find similar libraries in C++ as to the python

libraries used.

• Treat Python code as prototype and start from scratch. Use the FURPS+ and USE

CASE to develop the software PID in C++.

 7 Conclusion and Future Works

54

References/literature
1. Wikipedia. System on a chip [Available from:

https://en.wikipedia.org/wiki/System_on_a_chip.

2. Python. What is Python? Executive Summary [Available from:

https://www.python.org/doc/essays/blurb/.

3. EDGEFX. What is LabVIEW Programming and Why You Should Use it [Available

from: http://www.edgefxkits.com/blog/labview-programming-language-uses/.

4. Wikipedia. Serial Peripepheral Interface Bus [Available from:

https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus.

5. Wikipedia. Thread (computing) [Available from:

https://en.wikipedia.org/wiki/Thread_(computing).

6. Haugen F. Reguleringsteknikk. Høgskolen i Telemark: Høgskolen i Telemark; 2012

02.02.2012.

7. Espedal TA. Temperature behaviour in subsea sensor system without effect from head

pads. In: Mogård S, editor. 2018.

8. Lie B. Modeling of Dynamic Systems: Telemark University College; 2013 August

2013.

9. Wikipedia. Raspberry Pi [Available from:

https://en.wikipedia.org/wiki/Raspberry_Pi.

10. RS-Online. Raspberry Pi 3 Model B SBC [Available from: https://no.rs-

online.com/web/p/processor-microcontroller-development-kits/8968660/.

11. Wikipedia. Resistance thermometer [Available from:

https://en.wikipedia.org/wiki/Resistance_thermometer#Four-wire_configuration.

12. RTD accuracy – Class A, Class B, 1/3 DIN, 1/10 DIN: Temperature Controls Pty Ltd;

[Available from:

http://www.temperature.com.au/Support/RTDSensors/RTDaccuracyClassAClassB13DIN110

DIN.aspx.

13. RS-Online. RS Pro PT100 Sensor -50°C min +250°C max 10mm length x 2mm

diameter [Available from: https://no.rs-online.com/web/p/platinum-resistance-temperature-

sensors/8919141/.

14. adafruit. Adafruit PT100 RTD Temperature Sensor Amplifier - MAX31865

[Available from: https://www.adafruit.com/product/3328.

15. Digi-Key. Adafruit Industries LLC 3328 [Available from:

https://www.digikey.com/product-detail/en/adafruit-industries-llc/3328/1528-1804-

ND/6562952.

16. MAX31865 Data sheet: Maxim integrated; [Available from:

https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf.

17. Wikipedia. Solid-state relay [Available from: https://en.wikipedia.org/wiki/Solid-

state_relay.

https://en.wikipedia.org/wiki/System_on_a_chip
https://www.python.org/doc/essays/blurb/
http://www.edgefxkits.com/blog/labview-programming-language-uses/
https://en.wikipedia.org/wiki/Serial_Peripheral_Interface_Bus
https://en.wikipedia.org/wiki/Thread_(computing
https://en.wikipedia.org/wiki/Raspberry_Pi
https://no.rs-online.com/web/p/processor-microcontroller-development-kits/8968660/
https://no.rs-online.com/web/p/processor-microcontroller-development-kits/8968660/
https://en.wikipedia.org/wiki/Resistance_thermometer#Four-wire_configuration
http://www.temperature.com.au/Support/RTDSensors/RTDaccuracyClassAClassB13DIN110DIN.aspx
http://www.temperature.com.au/Support/RTDSensors/RTDaccuracyClassAClassB13DIN110DIN.aspx
https://no.rs-online.com/web/p/platinum-resistance-temperature-sensors/8919141/
https://no.rs-online.com/web/p/platinum-resistance-temperature-sensors/8919141/
https://www.adafruit.com/product/3328
https://www.digikey.com/product-detail/en/adafruit-industries-llc/3328/1528-1804-ND/6562952
https://www.digikey.com/product-detail/en/adafruit-industries-llc/3328/1528-1804-ND/6562952
https://datasheets.maximintegrated.com/en/ds/MAX31865.pdf
https://en.wikipedia.org/wiki/Solid-state_relay
https://en.wikipedia.org/wiki/Solid-state_relay

 7 Conclusion and Future Works

55

18. RS-Online. Sensata / Crydom 7 A SPNO Solid State Relay, DC, Surface Mount

Transistor, 60 V dc Maximum Load [Available from: https://no.rs-online.com/web/p/solid-

state-relays/7360873/.

19. crydom. DC60 Series [Available from: https://docs-emea.rs-

online.com/webdocs/1380/0900766b813806a1.pdf.

20. element14.com. Raspberry Pi 3 GPIO Header [Available from:

https://i.stack.imgur.com/RILry.png.

21. Wikipedia. FURPS [Available from: https://en.wikipedia.org/wiki/FURPS.

22. Smith SP. max31865.py [Available from:

https://github.com/steve71/MAX31865/blob/master/max31865.py.

23. PID.py: Ivmech Mechatronics Ltd.; [Available from:

https://github.com/ivmech/ivPID/blob/master/PID.py.

https://no.rs-online.com/web/p/solid-state-relays/7360873/
https://no.rs-online.com/web/p/solid-state-relays/7360873/
https://docs-emea.rs-online.com/webdocs/1380/0900766b813806a1.pdf
https://docs-emea.rs-online.com/webdocs/1380/0900766b813806a1.pdf
https://i.stack.imgur.com/RILry.png
https://en.wikipedia.org/wiki/FURPS
https://github.com/steve71/MAX31865/blob/master/max31865.py
https://github.com/ivmech/ivPID/blob/master/PID.py

 7 Conclusion and Future Works

56

Appendices
Appendix A Task Description

Appendix B Software PID code

 7 Conclusion and Future Works

57

Appendix A – Task Description

FMH606 Master’s Thesis
Title: Compact temperature regulator for subsea sensors

Supervisor: Hans-Petter Halvorsen

External Partner: Octio

Task Description:

Development and implementation of a versatile and compact PID temperature controller in a

SmartFusion2 SoC FPGA device, or similar ARM microcontroller, and verifying

performance, temperature stability for use with a subsea pressure and gravity monitoring

system.

Possible sub tasks (ranked):

1. Study and gain experience of a commercial PID controller in a “sample temperature

regulation system”

2. Simulate a system model of a sample temperature regulation system including PID

controller.

3. Develop and implement a SW PID controller architecture with comparable

performance as the reference temperature controller.

4. Develop and implement a simple register based system for parameter setting, control

and monitoring

5. Extend the system to an RTOS task (for integration into an existing SW system)

6. Extend the system to comprise a multistage (cascade) PID controller

The actual implementation can be done on a variety of ARM microcontroller platforms such

as:

• Raspberry PI 3

• Arduino

• SmartFusion2 SoC FPGA

• others

The SW language should preferably be based on C/C++ or Python.

The simulation platform could be based on Matlab, Simulink or LabView.

The verification of the performance could be by comparison of the reference system with an

industrial controller and the SW PID controller.

 7 Conclusion and Future Works

58

Task Background:

Commercial PID temperature controller often comes in enclosures including display or with

rack mounts which are impractical for volume constrained subsea applications. Control and

monitoring require a dedicated communication channel, normally RS-232 or ethernet, which

adds on the complexity.

As few commercial or open core software temperature controller are available, developing a

flexible SW architecture allowing integration into a general micro-controller system, is of

interest.

Student Category: IIA students.

Practical Arrangements: The assignment is reserved for a student that already has a

collaboration with the company in question.

OCTIO may provide a development platform (ARM). An example PID controller core (for

Arduino) may be provided. Lab space and physical prototype is available for testing and/ or

comparing systems.

The student needs to be located in Bergen, Norway.

Signatures:

Supervisor (date and signature):

Students (date and signature):

 7 Conclusion and Future Works

59

Appendix B – Software PID code

import time, math

#for filename

from time import gmtime, strftime

import RPi.GPIO as GPIO

import threading

#for GUI

import sys

#QT stuff

import pyqtgraph as pg

import PyQt5

from PyQt5 import QtCore

from PyQt5.QtWidgets import *

import numpy as np

The window from QtCreator aka GUI

import mainwindow_auto

import csv

create class for our Raspberry Pi GUI

class MainWindow(QMainWindow, mainwindow_auto.Ui_MainWindow):

 # access variables inside of the UI's file

 ### functions for the buttons to call

 # def pressedQuit(self):

 def pressedSaveInit(self):

 global SampleTime

 SP = gui.txtSetSP.value()

 P = gui.txtSetKp.value()

 I = gui.txtSetKi.value()

 D = gui.txtSetKd.value()

 7 Conclusion and Future Works

60

 fileName = 'pid_config.csv'

 mode = "w"

 data = []

 data = [SP, P, I, D, SampleTime]

 csv_writer(data, fileName, mode)

 def pressedUpdateSP(self):

 SP = gui.txtSetSP.value()

 newSetpoint(SP)

 def pressedUpdateAll(self):

 print("start program")

 SP = gui.txtSetSP.value()

 P = gui.txtSetKp.value()

 I = gui.txtSetKi.value()

 D = gui.txtSetKd.value()

 newAllParameters(SP,P,I,D)

 def pressedNewSampleTime(self):

 global SampleTime

 SampleTime = gui.txtSampleTime.value()

 def pressedResetPID(self):

 csv_reader('pid_config.csv')

 #event handler for when you X-out the window

 def closeEvent(self, event):

 #make sure control loop ends properly.

 global RunProgram

 RunProgram = False #This will end the while loop.

 event.accept() #Accepting closeing

 def __init__(self):

 7 Conclusion and Future Works

61

 super(self.__class__, self).__init__()

 self.setupUi(self) # gets defined in the UI file

 ### Hooks to for buttons

 self.btnSaveInitValues.clicked.connect(lambda: self.pressedSaveInit())

 self.btnUpdateSP.clicked.connect(lambda: self.pressedUpdateSP())

 self.btnUpdateAll.clicked.connect(lambda: self.pressedUpdateAll())

 self.btnResetPID.clicked.connect(lambda: self.pressedResetPID())

 self.btnNewSampleTime.clicked.connect(lambda: self.pressedNewSampleTime())

class PID:

 """PID Controller

 """

 def __init__(self, P=0.2, I=0.0, D=0.0):

 self.Kp = P

 self.Ki = I

 self.Kd = D

 self.sample_time = 0.00

 self.current_time = time.time()

 self.last_time = self.current_time

 self.clear()

 def clear(self):

 """Clears PID computations and coefficients"""

 self.SetPoint = 0.0

 self.PTerm = 0.0

 self.ITerm = 0.0

 self.DTerm = 0.0

 self.last_error = 0.0

 7 Conclusion and Future Works

62

 # Windup Guard

 self.int_error = 0.0

 self.windup_lower_guard = 0.0

 self.windup_guard = 80.0

 self.output = 0.0

 def update(self, feedback_value):

 """Calculates PID value for given reference feedback

 .. math::

 u(t) = K_p e(t) + K_i \int_{0}^{t} e(t)dt + K_d {de}/{dt}

 """

 error = self.SetPoint - feedback_value

 self.current_time = time.time()

 delta_time = self.current_time - self.last_time

 delta_error = error - self.last_error

 self.PTerm = self.Kp * error

 self.ITerm += error * delta_time

 # Integral Anti Windup

 if (self.ITerm < self.windup_lower_guard):

 self.ITerm = self.windup_lower_guard

 elif (self.ITerm > self.windup_guard):

 self.ITerm = self.windup_guard

 self.DTerm = 0.0

 if delta_time > 0:

 self.DTerm = delta_error / delta_time

 # Remember last time and last error for next calculation

 self.last_time = self.current_time

 self.last_error = error

 7 Conclusion and Future Works

63

 output_value = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm)

 # To hold output within bounduries

 if output_value > self.windup_guard:

 self.output = self.windup_guard

 elif output_value < self.windup_lower_guard:

 self.output = self.windup_lower_guard #lower limit since there is no cooling

 else:

 self.output = output_value

 def setKp(self, proportional_gain):

 self.Kp = proportional_gain

 def setKi(self, integral_gain):

 self.Ki = integral_gain

 def setKd(self, derivative_gain):

 self.Kd = derivative_gain

 def setWindup(self, upper_windup, lower_windup):

 self.windup_guard = upper_windup

 self.windup_lower_guard = lower_windup

 def setSP(self, set_point):

 self.SetPoint = set_point

class ADC(object):

 """Reading Temperature from the MAX31865 with GPIO using

 the Raspberry Pi. """

 #The MIT License (MIT)

 #

 #Copyright (c) 2015 Stephen P. Smith

 7 Conclusion and Future Works

64

 #

 #Permission is hereby granted, free of charge, to any person obtaining a copy

 #of this software and associated documentation files (the "Software"), to deal

 #in the Software without restriction, including without limitation the rights

 #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell

 #copies of the Software, and to permit persons to whom the Software is

 #furnished to do so, subject to the following conditions:

 #

 #The above copyright notice and this permission notice shall be included in all

 #copies or substantial portions of the Software.

 def __init__(self, csPin = 8, misoPin = 9, mosiPin = 10, clkPin = 11):

 self.csPin = csPin

 self.misoPin = misoPin

 self.mosiPin = mosiPin

 self.clkPin = clkPin

 self.setupGPIO()

 def setupGPIO(self):

 GPIO.setwarnings(False)

 GPIO.setmode(GPIO.BCM)

 GPIO.setup(self.csPin, GPIO.OUT)

 GPIO.setup(self.misoPin, GPIO.IN)

 GPIO.setup(self.mosiPin, GPIO.OUT)

 GPIO.setup(self.clkPin, GPIO.OUT)

 GPIO.output(self.csPin, GPIO.HIGH)

 GPIO.output(self.clkPin, GPIO.LOW)

 GPIO.output(self.mosiPin, GPIO.LOW)

 def readTemp(self):

 self.writeRegister(0, 0xA2)

 # conversion time is less than 100ms

 time.sleep(.01) #giving it 10ms for conversion

 7 Conclusion and Future Works

65

 # read all registers

 out = self.readRegisters(0,8)

 # define least and most significant bit

 [rtd_msb, rtd_lsb] = [out[1], out[2]]

 # picking out the ADC code for the temperature reading

 rtd_ADC_Code = ((rtd_msb << 8) | rtd_lsb) >> 1

 # converting ADC code to degrees Celsius

 temp_C = self.calcPT100Temp(rtd_ADC_Code)

 status = out[7]

 # 10 Mohm resistor is on breakout board to help

 # detect cable faults

 # bit 7: RTD High Threshold / cable fault open

 # bit 6: RTD Low Threshold / cable fault short

 # bit 5: REFIN- > 0.85 x VBias -> must be requested

 # bit 4: REFIN- < 0.85 x VBias (FORCE- open) -> must be requested

 # bit 3: RTDIN- < 0.85 x VBias (FORCE- open) -> must be requested

 # bit 2: Overvoltage / undervoltage fault

 # bits 1,0 don't care

 #print "Status byte: %x" % status

 if ((status & 0x80) == 1):

 raise FaultError("High threshold limit (Cable fault/open)")

 if ((status & 0x40) == 1):

 raise FaultError("Low threshold limit (Cable fault/short)")

 if ((status & 0x04) == 1):

 raise FaultError("Overvoltage or Undervoltage Error")

 return temp_C

 def writeRegister(self, regNum, dataByte):

 GPIO.output(self.csPin, GPIO.LOW)

 7 Conclusion and Future Works

66

 # 0x8x to specify 'write register value'

 addressByte = 0x80 | regNum;

 # first byte is address byte

 self.sendByte(addressByte)

 # the rest are data bytes

 self.sendByte(dataByte)

 GPIO.output(self.csPin, GPIO.HIGH)

 def readRegisters(self, regNumStart, numRegisters):

 out = []

 GPIO.output(self.csPin, GPIO.LOW)

 # 0x to specify 'read register value'

 self.sendByte(regNumStart)

 for byte in range(numRegisters):

 data = self.recvByte()

 out.append(data)

 GPIO.output(self.csPin, GPIO.HIGH)

 return out

 def sendByte(self,byte):

 for bit in range(8):

 GPIO.output(self.clkPin, GPIO.HIGH)

 if (byte & 0x80):

 GPIO.output(self.mosiPin, GPIO.HIGH)

 else:

 GPIO.output(self.mosiPin, GPIO.LOW)

 byte <<= 1

 GPIO.output(self.clkPin, GPIO.LOW)

 7 Conclusion and Future Works

67

 def recvByte(self):

 byte = 0x00

 for bit in range(8):

 GPIO.output(self.clkPin, GPIO.HIGH)

 byte <<= 1

 if GPIO.input(self.misoPin):

 byte |= 0x1

 GPIO.output(self.clkPin, GPIO.LOW)

 return byte

 def calcPT100Temp(self, RTD_ADC_Code):

 R_REF = 430.0 # Reference Resistor

 Res0 = 100.0; # Resistance at 0 degC for 400ohm R_Ref

 a = .00390830

 b = -.000000577500

 R_T = (RTD_ADC_Code * R_REF) / 32768.0 # PT100 Resistance

 temp_C = -(a*Res0) + math.sqrt(a*a*Res0*Res0 - 4*(b*Res0)*(Res0 - R_T))

 temp_C = temp_C / (2*(b*Res0))

 if (temp_C < 0): #use straight line approximation if less than 0

 temp_C = (RTD_ADC_Code/32) - 256

 return temp_C

class FaultError(Exception):

 #make sure control loop ends properly.

 global RunProgram

 RunProgram = False #This will end the while loop.

 pass

def get_temp():

 #import max31865

 csPin = 8

 misoPin = 9

 7 Conclusion and Future Works

68

 mosiPin = 10

 clkPin = 11

 adc = ADC(csPin,misoPin,mosiPin,clkPin)

 tempC = adc.readTemp()

 return tempC

def scale_u(x): # y = ax + b

 global SampleTime

 y1 = 0

 y2 = SampleTime

 x1 = pid.windup_lower_guard

 x2 = pid.windup_guard

 a = (y2 - y1)/(x2-x1)

 b = y1 - (a * x1)

 y = (a * x + b)

 return y

def scale_u_prosent(u): #Scale u PWM til prosent

 global SampleTime

 scaled = (u / SampleTime) * 100

 return scaled

def scale_u_for_plot(x): # y = ax + b

 y1 = 0.7

 y2 = 39.30

 x1 = 0

 x2 = 100

 a = (y2 - y1)/(x2-x1)

 b = y1 - (a * x1)

 y = (a * x + b)

 return y

 7 Conclusion and Future Works

69

def start_heating(duration):

 GPIO.setmode(GPIO.BCM)

 GPIO.setup(17, GPIO.OUT)

 GPIO.output(17, GPIO.HIGH)

 time.sleep(duration) #Signal width

 GPIO.output(17, GPIO.LOW)

 GPIO.cleanup()

 pass

def control_loop():

 start_time = time.time()

 prev_time = start_time

 lastTemp = 0.0

 csv_reader('pid_config.csv')

 #Creating measurement file with explanatory names in the first row

 #filename is unique. It's used date and time in filename to secure no overwriting

 fileName = strftime("%Y-%m-%d %H:%M:%S", gmtime()) + '.csv'

 data = []

 data = ['Date Time', 'Temperature', 'u_prosent','SampleTime', 'pid.SetPoint', 'pid.Kp',

'pid.Ki', 'pid.Kd','windup']

 mode = "a"

 csv_writer(data, fileName, mode)

 global SampleTime

 # Creating global arrays for plotting purposes

 global arrayTempC,arraySP,arrayCnt, arrayU

 arrayTempC = []

 arraySP = []

 arrayCnt = []

 arrayU = []

 7 Conclusion and Future Works

70

 # counter for plotting

 cnt=0

 try:

 global RunProgram

 while RunProgram:

 temperatureC = get_temp()

 deltaTemp1 = temperatureC - lastTemp

 deltaTemp2 = lastTemp - temperatureC

 #filter to remove bad readings

 if cnt == 0:

 pass

 elif deltaTemp1 > 0.5:

 temperatureC = lastTemp

 elif deltaTemp2 > 0.5:

 temperatureC = lastTemp

 else:

 pass

 lastTemp = temperatureC

 # Run PID

 pid.update(temperatureC)

 # Scale pid PWM

 u_scaled = scale_u(pid.output)

 u_prosent = scale_u_prosent(u_scaled)

 # Update GUI

 gui.txtShowTemp.setValue(temperatureC)

 gui.txtShowUTime.setValue(u_scaled)

 gui.txtShowUPorsent.setValue(u_prosent)

 # Run heating

 start_heating(u_scaled) #PWM signal

 7 Conclusion and Future Works

71

 # Log measurement and parameters to .csv file

 data = []

 mode = "a"

 data = [strftime("%Y-%m-%d %H:%M:%S", gmtime()), temperatureC, u_prosent,

SampleTime, pid.SetPoint, pid.Kp, pid.Ki, pid.Kd, pid.windup_guard]

 csv_writer(data, fileName, mode) #Call the writer

 # Log data for graph .txt file

 arrayTempC.append(temperatureC)

 arraySP.append(pid.SetPoint)

 arrayCnt.append(cnt)

 u_for_plot = scale_u_for_plot(u_prosent)

 arrayU.append(u_for_plot)

 txt_writer()

 cnt=cnt+1

 if(cnt>4000): #If you have 4000 or more points, delete the first one from the

array

 arrayTempC.pop(0) #This allows us to just see the last 4000 data points

 arraySP.pop(0)

 arrayCnt.pop(0)

 arrayU.pop(0)

 # setting loop time

 # SampleTime is controlling looptime

 sleep = SampleTime - (time.time() - prev_time)

 if sleep >= 0.01:

 time.sleep(sleep-0.01) # Compensate time this calculation takes

 else:

 time.sleep(0.0001)

 prev_time = time.time()

 pass

 7 Conclusion and Future Works

72

 finally:

 GPIO.cleanup() #To secure that heating is shutdown.

 print("### PROPER SHUTDOWN ###")

def txt_writer():

 global arrayTempC, arraySP, arrayCnt, arrayU

 file = open("temperature.txt","w")

 for index in range(len(arrayCnt)):

 file.write("\n" + str(arrayCnt[index])+

","+str(arrayTempC[index])+","+str(arraySP[index])+","+str(arrayU[index]))

 file.close()

def csv_writer(data, path, mode):

 """

 Write data to a CSV file path

 """

 with open(path, mode, newline='') as csv_file:

 writer = csv.writer(csv_file, delimiter=',')

 #for line in data:

 writer.writerow(data)

def csv_reader(path):

 parameter = []

 with open(path, newline='') as csv_file:

 reader = csv.reader(csv_file, delimiter=',')

 for row in reader:

 parameter = row

 #Also set new sampletime

 global SampleTime

 SampleTime = float(parameter[4])

newAllParameters(float(parameter[0]),float(parameter[1]),float(parameter[2]),float(paramete

r[3]))

 7 Conclusion and Future Works

73

def newSetpoint(SP):

 pid.SetPoint = SP

def newAllParameters(SP, P, I, D):

 pid.SetPoint = SP

 pid.setKp(P)

 pid.setKi(I)

 pid.setKd(D)

 newParametersToGui()

def newParametersToGui():

 global SampleTime

 gui.txtSetSP.setValue(pid.SetPoint)

 gui.txtSetKd.setValue(pid.Kd)

 gui.txtSetKi.setValue(pid.Ki)

 gui.txtSetKp.setValue(pid.Kp)

 gui.txtSampleTime.setValue(SampleTime)

def runGui():

 gui.show()

 newParametersToGui()

 # without this, the script exits immediately.

 sys.exit(app.exec_())

if __name__ == "__main__":

 global RunProgram, SampleTime

 SampleTime = 2.0

 RunProgram = True

 pid = PID(0, 0, 0) # object is accesible to all

 app = QApplication(sys.argv)

 gui = MainWindow()

 7 Conclusion and Future Works

74

 #daemon not = True, so that control_loop will end properly

 t = threading.Thread(target=control_loop)

 t.start()

 runGui()

