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In volume constrained subsea systems reducing size is beneficial for several reasons.
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controllers and other off-the-shelf components with it a small system on a chip is of
interest.

In this master thesis, design and implementation of a prototype subsea system with
software PID control using a system on a chip device was developed.

Simulation of the system was built from a mathematical model describing the system and
programmed in LabVIEW software.

Complete prototype of the system was developed and performance in temperature stability
was tested.
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1 Introduction

1 Introduction

The projects main goal is to develop a prototype software Proportional-Integral-Derivative
(PID) controller in a system on a chip (SOC) device, for temperature regulation in a subsea
sensor system. This task is provided by OCTIO. OCTIO works with geophysical monitoring
services for oil drilling operations, to ensure safe drilling without discharging into the
environment or other accidents. The system in focus already have temperature control by
using off-the-shelf industrial PID controllers. With a SOC device the size would deduct by
50%. Which is significant and of interest, since the system is often mobilized. Size and
weight deduction isn’t only beneficial for practical reasons, but also safety reasons. Detailed
description of what the subsea sensor system is comprised of will not be mentioned, since it’s
a secret OCTIO wants to keep.

1.1 Background

Commercial PID controllers often includes display and/ or rack mounts. Each of the
controllers need power modules. Furthermore, control and monitoring needs dedicated
communication channels, often ethernet, RS-232 or RS-485, which may add the need of
protocol converters. This is impractical for volume constrained subsea application, where
everything must be fitted into pressure vessels. It also could create the issue of too much self
heating from electronic components in warmer environments.

One example of a temperature regulated subsea sensor system is comprised by splitting the
sensor system and the control systems into multiple units, as shown in Figure 1-1. The aspect
of self-heating from electronic components, is handled this way. But, splitting the system into
several units also adds on the risk faulty wire connections, by needing connection between
the units as well as top side control system.

ol

Top side control system

IIII»

Subsea units

N

Figure 1-1: Subsea sensor system comprised of several units.

By implementing software PID controller the temperature regulated subsea sensor system can
be reduced to one unit, as shown in Figure 1-2. Which is advantageous for several reasons,
including the deduction of industrial components needed, but also transportation and easier to
handle when lowering it down into the ocean and up again. Also, it will reduce power
consumption and risk of wires to break.



1 Introduction
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Subsea sensor
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with internal temperature control

Figure 1-2: Subsea sensor system comprised of one unit.

1.2 Objectives

The task description specifies development and implementation of a versatile and compact
PID temperature controller in a SOC device. With the following possible sub tasks gathered
from the task description in Appendix A:

1. Study and gain experience of a commercial PID controller in a “sample temperature
regulation system”.

2. Build a, somewhat simplified, mathematical model of the system, and use it to create

a realistic simulator of the temperature regulation system. Behavior can be compared

with data from real appliance.

Include a PID controller to the simulator.

4. Develop and implement a software PID controller on a microcontroller, with
comparable performance as the reference temperature controller.

5. Develop and implement a simple register based system for parameter setting, control
and monitoring.

6. Extend the system to an RTOS task (for integration into an existing software system).

7. Extend the system to comprise a multistage (cascade) PID controller.

w

1.3 Focus Areas

In dialogue with OCTIO, the tasks were prioritized as such; main goal is to develop a
physical prototype with software PID on a SOC device. With performance in temperature
stability verified for use in subsea sensor systems, +/- 0.1 °C. Extend it with a simple
graphical user interface for adjusting parameters and monitoring. Build a simulator and
extend it with PID control.

Programming language LabVIEW will be used for developing a simulation of the system and
Python for development of a functioning prototype software for testing. The controller
performance in temperature stability will be verified by testing performance in air and water,
and while submerging into water. Necessary research regarding hardware is essential before
any development of prototype can begin.

Challenges may be developing a simulator realistic enough to be able to use it for tuning PID
purposes. Also finding good PID parameters, since the systems environment will change
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from air with temperatures up to around 26 °C to water with temperatures down to around -3
°C.

1.4 System description

System description is visualized in Figure 1-3, with functional and non-functional
requirements listed beneath.

Monitoring process PID controller Process
| « Control signal
> Subsea
. Raspberry Pi sensor
PID parameters setting system
———
E J'b JE— Process value

Figure 1-3: System description
Functional requirements:

Read temperature.

Compute control signal.
Displaying system variables.
Temperature logging.
Parameter setting.

Non-functional requirements:

e Temperature stability +/- 0.1 °C.
e Pulse width modulation.
e Programming languages:
o G (LabVIEW)
o Python
e Hardware:
o PT-100, 4- or 3-wire.
o 12V Heat pads
o Solid-State Relay (for easier testing on real system)

1.5 Report structure
The report is divided into the following chapters:

1: Introduction

2: Research and theory

3: Simulation

- 4: Building Physical Prototype
5: Developing Software PID
6: Testing and Tuning Prototype
7: Conclusion and Future Works
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2 Research and theory

This chapter is about theory used to solve the task. Including principals, components and
programming languages in the field of computer science. As well as PID control theory and
needed understanding of Thermodynamics.

2.1 Computer Science

The following subchapter presents the needed knowledge about electrical components,
programming, communication protocols, signal modulation and process.

2.1.1 System on a Chip (SOC)

A system on a chip (SOC) is a small chip with all required electronic components and circuits
in a given system, for example a computer. It often comprised of an processor, memory and
some external interfaces for communication protocols, such as HDMI, USB and SPI. A
difference between a traditional PC and a SOC device is that the CPU, memory and other
components isn’t replaceable. All the components are integrated into one chip. [1]

SOCs are commonly divided into 3 types:

e SOCs built around a microcontroller.
e SOCs built around a microprocessor.
e SOCs designed for a specific purpose, which doesn’t fit into the 2 other categories.[1]

2.1.2 Python Programming Language

Python is an interpreted programming language where the syntax emphasizes readability. It
will be used in this thesis to create the software PID controller. The Python interpreter and
the standard library is open source software. In Python there is no compilation which makes
the edit, test and debug faster. If a bad input or a bug appears the Python interpreter will raise
an exception. Fallowed by printing its stack trace.[2]

2.1.3 LabVIEW

Laboratory Virtual Instrument Engineering Workbench (LabVIEW) is software for visual
programming in the language G. Which is the main difference to most other development
platforms. Predefined components can be added to the program using drag and drop from a
list. G is a dataflow programming language, e.g. it changes outputs depending on variables in
the program flow. The changes are reflected in real time. [3]

A LabVIEW program is called Virtual Instrument (V1) and a VI can be implemented inside
another V1. Two windows are used when programming in LabVIEW, Front Panel and Block
Diagram. The Front panel is the GUI, with components like indicators and controls, which is
outputs and controllable inputs. The Block Diagram window is where the program flow is
determined. An example of the two windows is shown in Figure 2-1, window to the left is the
Front Panel and to the right is the Block Diagram. [3]
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Figure 2-1: The two LabVIEW windows Front Panel, to the left, and Block Diagram, to the right.

2.1.4 Pulse-width modulation (PWM)

Pulse-Width Modulation (PWM) is a modulation with the width of an impulse. Where the
widths of the pulses correspond to specific data values. PWM operations is like a switch that
constantly rotates on and off, illustrated in Figure 2-2.

20%
Duty Cycle

80%
Duty Cycle

100%
Duty Cycle

Figure 2-2: Three different pulse width signals.

2.1.5 Serial Peripheral Interface (SPI)

This subchapter is based on reference [4]. The SPI communication protocol will be used in
this thesis, for retrieving measurement data from an RTD temperature sensor amplifier with
ADC chip MAX31865. SPI is a synchronous serial communication interface for short
distance communication. SPI is full duplex, meaning both receiving and sending
simultaneously, using a master-slave architecture as shown in Figure 2-3.

CLK

MOSI
MASTER | \iso | SLAVE

CS

Figure 2-3: Serial Peripheral Interface communication example.

CLK is clock generated by the master. MOSI stands for Master Output Salve Input and is data
output from the master. MISO is data output from the slave and stands for Master Input Slave
Output. CS is Slave Select, used for slave selection, it could be left out in a single master to
single slave circuit.

10



The master and slave uses shift registers to shift data in Serial In Serial Out (SISO) mode.
Data transmission starts when the master configures the clock frequency. During each clock
cycle the master sends a bit on the MOSI connection and the slave reads it. Simultaneously,
the slave sends the master a bit over the MISO connection, as illustrated in Figure 2-4.

2 Research and theory

MASTER

Shift register

[o]1]2[3]4]5[6]7]
A

CLK - SLAVE
MOSI Shift register

>[0]1]2[3]4]5]6]7]
MISO

Figure 2-4: Two shift registers connected together forming a circular buffer.

The master sets the clock frequency for SPI data transfer, but clock polarity (CPOL) and

clock phase (CPHA) must also match with the slave. CPHA defines when to transfer data and

CPOL is the idle or active state of the clock. Clock Edge (CKE) is inverted clock phase.
Figure 2-5 shows a timing diagram representing a data transfer in a time domain containing

multiple rows.

CPOL=0 M vuwyryryruyme

SCK  cpol=1—L s —

Ss \ I

Cycle # DA X Yy aysXe 718

CPHA=0 Miso o157 5 m=

MOSI =T sy ay¥syeay716yXe

Cycle # T2 3T 56 7By

CPHA=1 mMisoz@m Iz iayslelilel:

MOSI DX I T XS TS ey eEy=

Figure 2-5: SPI timing diagram for clock polarity and phase.[4]

CPOL equal to 0 means that the base value of clock is 0, e.g. idle state is 0 and active state is

1. If CPHA also is equal to 0 data transmissions occurs during 0 to 1 transitions. Different

SPI clock configurations are shown in Table 2.1.

Table 2.1: Different modes of SPI.

SPI MODE CPOL CPHA CKE
0 0 0 1
1 0 1 0
2 1 0 1
3 1 1 0

11
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2.1.6 Threads

A process can be divided into blocks of statements called threads, illustrated in Figure 2-6. It
is the smallest sequence of programmed instructions for the processor registers. A thread is
responsible for the execution of its block of statements. [5]

Process

y
|

II¢

t4

Threads

Figure 2-6: A process that is divided into 4 block statements called threads.

2.2 PID control

This chapter is about basic knowledge of PID control and based on reference [6]. Figure 2-7
shows how a closed loop control system uses feedback, to determine new output value. It
calculates the error value between the measured feedback, process variable, and the set point,
which is the desired value to achieve. Based on this error value the controller performs steps
to bring the output value closer to the desired set point.

set point error value output value process variable
Controller > Process »*

Figure 2-7: Closed loop control system using feedback to steer the output value to the desired process variable,
which is the set point value.

PID controller is the most common control algorithm and is used in a closed control feedback
loop to regulate a process, for example temperature in tank by controlling heat elements. PID
stands for proportional-integral-derivative which is the three mathematical operations the
regulator performs, these are shown in Figure 2-8 and explained in more depth in the
following subchapters.

P-term

set point error value

+ output value

t¥

‘T’
process variable

.

D-term
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Figure 2-8: PID controller is comprised of 3 terms, proportional, integral and derivative term.

There are variations of the PID algorithm, but the one used in this project is shown in
equation (2.1).

u(t) = Ky e(t) + Kif e(t)dt + Ky d(;(tt)

(2.1)

Where e(t) is the error value, equation for calculating e(t) shown in equation (2.2), and u(t)
is the control signal to the actuator, also known as output value. K,, K; and K, is respectively
the coefficients for the proportional, integral and derivative terms, often denoted P, 1 and D
respectively. These coefficients, called gains, changes the error value through the controller
and generates new output value to the actuator, to bring the process value near set point. The
gain values are altered to find the optimal system response, this procedure is called tuning,
more about this in chapter 2.2.5.

e(t) =r() —y(®) (2.2)

Where the difference between set point, r(t), and process variable, y(t), accumulates to the
error value, e(t).

2.2.1 P-term

A controller with only P-term, commonly called P-controller, has output value proportional to
the error value, since control value is error value multiplied by the proportional coefficient, as
shown in equation (2.3). That means, larger error, or larger K,, value, gives larger output.
This type of controller has some drawbacks, for example never reaching set point in steady
state, because of small error value the controller output becomes negligible. E.g. even when
reaching steady state there is still error, an offset from set point, commonly called steady-
state error, shown in Figure 2-9. Another drawback is if K,, value is too high, that will lead to
oscillation of process variable.

P-term = K, e(t) (2.3)

FSetpoint == == ==== b Sl

Offset
A4

Process variable

Time >

Figure 2-9: Steady-state error between set point and process variable, also called offset.

2.2.2 I-term

The I-term, shown in equation (2.4), eliminates offset. It accounts for past values of the error
value by integrating them from startup t = O to present time. I-term seeks to remove the
steady state error by adding control effect based on historic cumulative error value. I-term

13
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won’t stop changing the output value until the error value is 0. When the error value is 0, the
effect in output value is solely from the I-term.?

I-term = K; [, e(t)dt (2.4)

2.2.3 D-term

D-term, shown in equation (2.5), is a best estimate of the future trend of the error value,
based on its current rate of change. Using the D-term could allow for higher values for K,
and K; whilst the loop is still stable, giving faster response and better loop performance.? E.g.
the main purpose of D-term is improving the transient response. Though a problem with the
D-term is that it’s sensitive to noise. With a noise spike in measurement of process variable
the D-term will increase to compensate and furthermore make the control less stable.

de(t)
dt

D-term = K, (2.5)

2.2.4 Anti Windup

Every actuator has a saturation limit, for example a valve cannot open more than 100% or
close less than 0%. Under normal circumstances these limits shouldn’t be reached. But say
there is a disturbance and the error value grow beyond the normal circumstances and the
output value maximum isn’t enough to compensate for this disturbance. It will cause the I-
term to accumulate over the time period to bring back process variable near to the set point
by integrating up the deviation so that the output value will increase and increase. Therefor
overshooting and continuing to increase as this accumulated error is growing, this is called
integral windup, see Figure 2-10. As a result, the output value may exceed the saturation
limits of the final control element, because of the I-term, and become unstable.

Process variable

Tim .

output value, u [%]

>

Figure 2-10: Example of how integral windup might affect the control system after a disturbance. With no
limitations on the I-term the peaks grow, and the system becomes unstable.

Time:

LIf it hasn’t manually been added effect.
2 Assuming good tuning for K,,, K; and K.

14



2 Research and theory

Since windup is caused by the I-term, the solution is to clamp it. If only limiting output value,
the I-term will still grow too large, or low, and the windup problem will still be present.
There are different solutions to this problem, for example:

e setting error value equal to 0 when output value is at saturation limit.
e giving the I-term maximum and minimum values within saturation limits.

2.2.5 Tuning PID controller theory

Before tuning it is important to define performance requirements. This is often measured by
applying a step change in set point and then measuring the response of the process variable.
The response can then be evaluated by measuring defined waveform characteristics, as shown
in Figure 2-11. The definition of these quantities can vary from industry to academic.

Overshoot
Steady-state error
20 - X
- A
2 Rise time Process variable Setl:ling fime
Deadtime
0-F—— H
: Y
Time >

Figure 2-11: Example of a PID-controlled closed loop response to a change in set point.

Figure 2-11 shows the names of the different waveform characteristics. Rise time is the time
from process variable goes from 10% to 90% of steady state. Overshoot is the amount the
process variable goes over, in positive y-direction, the process variable value in steady state.
The time required for the process variable to settle within bounds of the steady state process
variable value, for example +/- 5%, is called settling time. As mentioned in chapter 2.2.1, the
steady-state error is the offset between process variable and set point in steady state.
Deadtime is the delay from when the step change happens to when the process variable
change can be observed.

There are several methods created for tuning PID controller, these will not be discussed here.
Instead the characteristics of typical system response while tuning and the effects from
changing the different PID gains will be in focus. Table 2.2 shows trade-offs of how
individually changing the different PID coefficients typically affect the system response.
These correlations aren’t always accurate since each gain has an effect on each other, for best
performance all the coefficients must be tuned jointly.

Table 2.2 Possible effects of independently tuning the PID gains on a closed loop response.

Rise time Overshoot Settling time Steady-state error | Stability

15
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Increasing K, Decrease Increase Small increase | Decrease Degrade
Increasing K; Small decrease Increase Increase Large decrease Degrade
Increasing K, Small decrease | Decrease Decrease Minor change Improve

Some typical damped system responses are unstable, critically damped, under-damped and
over-damped, these are shown in Figure 2-12. Unstable systems produce an oscillation
diverging step response, this kind of system won’t settle down. An under-damped system has
an oscillating response as well, but in this case, it eventually dampens out, unlike the unstable
system. Over-damped system is characterized by long rise and settling time, but no
overshoot. A critically damped system response is a compromise of response time and
damping effects. It has shorter rise and settling time compared to over-damped system, but
longer peak time in comparison with under-damped system.

et point

1w

Process variable

Process variable,

Unstable Critically damped
Tim . - Tim >

Set point

Process variable

Set point

Frocess variable

Under-damped

Over-damped

Tim

>

Tim,

>

Figure 2-12: System damping examples.

Loop cycle is also an important parameter of a closed system. It is the time interval between
each call to the PID-controller, also sometimes called cycle time or sample time. This
depends on the system to be controlled, if it changes quickly a fast loop cycle is required, or
the system will become unstable. If the loop cycle is very fast, it isn’t usually a problem, but
it could make the D-term be essentially just noise.
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3 Simulation

This chapter is developing a simulation of the temperature behavior in the subsea sensor
system. By analyzing the system, building a mathematical model, calculating constants,
creating simulation software in LabVIEW and comparing with the real systems behavior. The
calculated values describing the system will not be presented, since OCTIO do not wish to
have them openly available. However formulas used to find these values will be mentioned.

3.1 Analyze

The system, shown in Figure 3-1, has a cylindrical shaped pressure vessel defining the
boundaries. Inside there are multiple layers of solids and fluids before reaching the inner area.
The system is completely sealed, so that the system isn’t affected by pressure changes in
surroundings. However, what does affect the system is environment temperature, which is the
main disturbance and is why a controller is needed. The compartment connected to the
heating element is the actuator for the controller and is denoted heating compartment.

The subsea sensor system, in addition to have changes in environment temperature, have
change in environment medium. It will go between air and water, which has different heat
transfer coefficients. Water transfers heat faster than air. For the environment this system is
used the water environment will usually also have lower temperatures than when in air
surroundings. For the real system, internal temperature will stabilize around 8.7 °C for
environment water temperature of 4 °C. While the internal temperature would rise to around
30 °C in environment air of 25 °C, which means it isn’t linear [7].

Subsea sensor system

Pressure

vessel Insides of the
system

electric components Tem perature
sensor

/

Layers of
different
fluids and
solids

| Heating element

Figure 3-1: Cross-section of the subsea sensor system.
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3.2 Building the Mathematical Model

This subchapter is based on reference [8]. The goal is to create a differential equation which
calculates the temperature inside the system, based on disturbance from environment
temperature and medium, as well as effect from heating compartment and self heating from
electric components. E.g. the energy balance for thermodynamic systems is a good starting
point, which is elaborated in following subchapter.

3.2.1 Energy Balance

Balance law for thermodynamic systems gives the energy balance shown in equation (3.1).
Time argument is excluded in this subchapter for simplicity reasons.

Z_Lt? - Z Qin — Z Qout Z Qgenerated (3.1)

The energy balance deriving will be based on assumptions and equations representing energy
inputs and outputs presented in following subchapter.

3.2.2 Assumptions about the System

Energy is assumed to be proportional with temperature and volume, as seen in equation (3.2).
E =cpVT (3.2)

Where c is specific heat capacity of the system [J/kg K], p is the density of the system
[kg/m?], V is volume of the system [m?] and T is temperature inside the system [K].

Qin in the energy balance is representing the added effect. This can be divided into effect
from electrical components, denoted P,, and effect added from heating compartment, when
temperature control is implemented, denoted Py, as shown in equation (3.3).

Also assuming, that there is no storage of energy in the heating element, which means the
effect added to heat element is added directly to the system. Therefor it isn’t necessary to
derive an own energy balance for the heat pads.

Qin = P + Pyp = Py (3.3)
Where P;, is the accumulated heat effect added. Heat loss is denoted Q,,,;, as shown in
equation (3.4).

Qout = U[Teny — T} (3.4)
Where U is the overall heat transfer [J/s m?K] or [W/m?K]. Expression for U can be derived
from equation for thermal resistance shown in equation (3.5).

1
Repe = i (3.5)
By multiplying with U on both sides and then dividing by R;,;, U is alone on left-hand side,
shown in equation (3.6).
1

= 3.6
Riot (39)

Inserting equation (3.6) into equation (3.4) gives equation (3.7) to describe heat loss.
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3 Simulation

Qout = A (3.7)

There is no energy generation, no chemical reaction etc. In other words, Qgenerateq Can be
neglected from the energy balance, as shown in equation (3.8).

e T Y (38)

3.2.3 Differential equation

The energy balance can now be written as shown in equation (3.9), based on assumptions and
expressions from previous subchapter.
d(CpVT) _ _ (T - Tenv)
e~ ™" Riot
Assuming constant volume, density and specific heat capacity they can be moved out of the
derivation as shown in equation (3.10).

( lenv)
_[H =p. —-—_°em’ A
cpV . P; ” (3.10)

(3.9)

Which leads to a differential equation, shown in equation (3.11), for temperature inside the
subsea sensor system, which can be used for simulation.

dT 1 1
E = C',D_V Py, — m (T — Teny) (3.11)
o
The differential equation has three time dependent parts:

e the internal temperature, T.
e the environmental temperature, T, .
e added power, P;,.

3.3 Developing Simulation in LabVIEW

This chapter is about developing the LabVIEW simulation of the subsea sensor. It will
include code and functionality.

3.3.1 LabVIEW Code for Simulating

Figure 3-1 shows how the differential equation is comprised in the Block Diagram window.
Inside the frame in the lower left corner its created a logic to use either Rtot for water
environment or air. This is automatically chosen based on environment temperature. If
environment temperature is over 15.5 °C it will use Rot for air.

In Figure 3-2 the PID algorithm made in a Formula Node is shown. The output of the PID
controller is scaled to a PWM signal using logic shown in Figure 3-3. How the whole
program is connected inside a Control and Simulation loop can be seen in Figure 3-4.
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Figure 3.1: LabVIEW code of the differential equation.

float delta_error;
float cutput;

float cutput_value;
float PTerm:;

float ITerm;

float DTerm;

error = SetPoint - T;
proportional gain (Kc) delta_error = error - error_last;

PID gains

PID regulator

integral time (Ti, min)
derivative time (Td, min)

PTerm =Kp * error;

ITerm = ITerm_last + (error * delta_time):

if (ITerm < 0) {
ITerm =0

1
if (ITerm > 80) {

Term = 80; output variable

) o]

DTerm = 0;
if (delta_time > 0) {
setpoint DTerm = delta_error / delta_time;

[mEE g }
output_value = PTerm + (Ki *ITerm) + (Kd * DTerm);

if (output_value < 0) {
output_value = 0;

1

if (output_value = 80) {

[Term_last|output_value = 80;
1

output = output_valug

=g ITerm(

[DELK
— st

Figure 3-2: PID controller made using Formula Node in LabVIEW.
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Scale u for PWM. from 0 to Sample Time
y=ax+bh

B e
>

>
>

Figure 3-3: Scaling output of the PID to a PWM signal.

Figure 3-4: The complete Block Diagram view of the LabVIEW program.

3.4 Comparing Simulator to the Subsea Sensor System

This chapter is about comparing simulator to the real subsea sensor systems temperature
behavior with respect to environment temperature. The values representing the real subsea
sensor was approved for sharing by OCTIO.

Figure 3-5 shows the simulator responding to step response in environment temperature. The
first step is from 25 °C to 4 °C, the second is from 4 °C back to 25 °C. From the graph it can
be read that temperature inside the system in 25 °C environment air stabilizes on 30 °C. It can
also be read that it stabilizes on 8.7 °C in environment of 4 °C.

Waveform Chart T inside AN

A0 T_env - |

Time

Figure 3-5: Simulator responding to step response in environment temperature.
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The simulated temperature response curve is also of similar shape the real system. For
example, with the step response from 25 °C to 4, the curve slowly decreases in the beginning.
Then it decreases very fast until slowly converging into steady-state.
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4 Building Physical Prototype

4 Building Physical Prototype

This chapter is about designing and building a prototype subsea sensor system with control
system on a Raspberry Pi. It is comprised of materials lying around and commercial available
electronic components. The software PID controller is developed using Python programming
language.

4.1 Design Specifications

Figure 3-1 shows the subsea sensor system that will be made a prototype of. By using
materials at hand combined with available industrial electronic components. For water proof
housing it was found a spare pressure vessel, of different dimensions than the real appliance.
Which is ideal since it will have similar heat transfer values. The heating compartment will
be represented by a soda can, as shown in Figure 4-1, with three available heat pads glued to
it. Temperature sensor will be placed in the middle of the soda can. The different layers
between pressure vessel and heating compartment will be represented by a layer of insulation
and air. The internal heating from electrical components will not be represented in the
prototype.

Process

Soda can
Pressure

vessel

Temperature
sensor
Air

—
/
Insulation

| Heating element

Figure 4-1: Prototype of subsea sensor system.

The available heat pads are 12 V with 7.5 Watts (W) and will need 1.875 Ampere (A) when
connected in parallel, as shown in equation (4.1). Which is more than the Raspberry Pi can
provide with its outputs for 3.3 VV and 5 V. To generate this signal, it will be utilized a
laboratory power supply. The voltage will be sent through a relay which is to be controlled by
the Raspberry Pi. An analogue to digital converter (ADC) is needed to read the temperature
sensor using Raspberry Pi. Overview of prototype with subsea sensor system and control
system can be seen in Figure 4-2.

4 12V
[==>1]=
P 75+75+75W

=1.875 4 (4.1)
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Process

J \ Control
Raspberry Pi

ADC
Temperature \
sensor '

Air + =
/ 12v DC
Insulation

| Heating element

Soda can

Pressure
vessel Inside the soda can

v

Figure 4-2: Prototype of subsea sensor system with control system.

4.2 Chosen Hardware

This subchapter is about hardware chosen to be used in the prototype system.

4.2.1 Raspberry Pi

Raspberry Pi, shown in Figure 4-3, is a single-board computer capable of running different
types of OS. It has a Broadcom SOC, including an ARM compatible central processing unit
(CPU) and graphics-processing unit (GPU). All storage is on an external micro SD card. [9]

Figure 4-3: Raspberry Pi. [10]

It’s chosen to use the third generation Raspberry Pi, Raspberry Pi 3 Model B, which has WI-
FI and Bluetooth module integrated. It has 40 General-purpose input/output (GP10),
UART, 12C and SPI support. Specifications are shown in Table 4.1.

Table 4.1: Raspberry Pi 3 Model B technical specifications. [10]

SOC Broadcom BCM2837

CPU 64-bit quad-core, 1.2 GHz ARM Cortex-A53

GPU Dual core Videocore IV® Multimedia co-processor
RAM 1 GB LPDDR2

Wireless connection 802.11 b/g/n 2.4 GHz Wireless LAN and Bluetooth 4.1
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GPIO 40-pins

Ports 1 x 10/100 Ethernet port, 1 x HDMI video/audio connector, 1 X
RCA video/audio connector, 1 x CSI camera connector, 4 X
USB 2.0 ports

Storage Micro SD card

Power Micro USB connector for 2.5 A power supply

4.2.2 Temperature sensor

The PT-100 temperature sensor chosen is shown in Figure 4-4, it’s a 4-wire platinum
resistance temperature detector (RTD). PT-100 also comes with 2- or 3-wires which has less
accuracy, since the 4-wire connection eliminates the influence of the connection lead on the
measuring result [11]. It is class A in accuracy, meaning it will be +/- 0.23 °C in temperature
range -40 to 40 °C, compared to class B RTDs which is +/- 0.5 °C in the same range [12]. For
more information about the sensor, see reference [13].

\ /
SN

Figure 4-4: RS Pro PT100 Sensor

(]

4.2.3 Analogue to Digital Converter

Instead of a regular ADC it was chosen to use PT100 RTD amplifier, shown in Figure 4-5,
with internal ADC. Adafruit PT100 RTD Temperature Sensor Amplifier, MAX31865, is
designed to read the low resistance and automatically adjust and compensate for the

resistance of the connecting wires, which gives higher accuracy for temperature readings.
[14]

Figure 4-5: Adafruit PT100 RTD Temperature Sensor Amplifier MAX31865. [15]
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MAX31865 can be read using SPI connection. It could be connected to Raspberry Pi is
shown in Figure 4-6. ADC resolution for MAX31685 is 15 bit, which in nominal temperature
resolution is 0.03125 °C.[16] For more information about MAX31865 see datasheet in
reference [16]. MAX31865 will from here be referred to as ADC.

MAX31865

Vin .GND 3v3 |CLK SDO|SDI | CS |RDY

+3.3V GND CLK MISO MOSI CEO

Raspberry Pl

Figure 4-6: Connection between MAX31865 and Raspberry Pi.

4.2.4 Solid-State Relay and Transistor

The relay chosen to control the 12 V signal, Crydom Solid-State Relay (SSR) DC60S7, is
shown in Figure 4-7. SSRs are fully electronic, there is no moving parts inside. They are
fundamentally like other relays, there is complete electrical isolation between their low
voltage input and, potentially high, voltage output contacts. The output is like an electrical
switch, by having very high resistance when open, and a very low resistance when closed.
Advantages with SSR is, among others, that it has fast response time and have high life-time
expectancy.[17]

Figure 4-7: Crydom DC60S7 Solid-State Relay. [18]

The chosen SSR has minimum turn on voltage at 3.5 V[19]. The Raspberry Pi GPIOs output
is 3.3V, which isn’t enough to turn on the SSR. Instead by using an NPN transistor, 1K Q
resistor, Raspberry Pi 5 V output DC power source and 3.3 V GPIO as shown in Figure 4-8,
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the control signal is 5 V. For more information about Crydom DC60S7 see datasheet in
reference [19].

Subsea
sensor
system

@/ 12V DC

Heat element

=

N

SSR NPN transistor
=
0
+5V GPIO GND
+33V
Raspberry Pl

Figure 4-8: Wiring to generate a 5 volts control signal from Raspberry Pi, using NPN transistor and 1K Q
resistor.

4.3 Assembling the Prototype

This chapter is about assembling the physical prototype with the parts mentioned in previous
subchapter. It includes soldering, electrical wiring, with testing of connections and circuit
logic, as well as fitting it into the pressure vessel.

4.3.1 Soldering the ADC

The ADC came without the headers connected to the terminal block. To secure good
connection these had to be soldered, as shown in Figure 4-9. The soldering where verified by
connecting the amplifier to the temperature sensor and Raspberry Pi, as shown in Figure
4-10. Then run a test program on the Raspberry Pi to read the temperature. The temperature
read was compared to another verified temperature sensor. This verified the soldered
connections and that the amplifier and temperature sensor was working properly.
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Figure 4-10: Raspberry Pi connected to the amplifier, which is attached to the PT100 temperature sensor.

4.3.2 Control Signal Circuit

The circuit for generating 5 V control signal using NPN transistor and a resistor was wired
and was tested by measuring voltage across the SSR, as shown in Figure 4-11. The voltmeter
reads 5.113 V when the GPIO pin is set high, as shown in Figure 4-12, and around 0 V when
GPIO pin is set low. The circuit performance was concluded satisfactory, control signal of a
little over 5 V isn’t an issue when SSRs max control input is 32 V [19].
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4 4
SSR
NPN transistor
=== Y/ kemm-a
=
Voltmeter a5
= +5V GPIO GND
+33V
Raspberry PI

Figure 4-11: Electric circuit of how the voltmeter is connected to the control signal circuit, to read voltage
across the SSR.

Figure 4-12: Voltmeter reading voltage across the SSR.

4.3.3 Heating compartment

The three available heat pads are silicone heater pads and will be glued to the soda can,
around its circumference, to provide homogenous heating, as shown in Figure 4-13.
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Figure 4-13: Three heat pads glued to a soda can.

There is used two 5-way conductors to connect the heat pads in parallel, shown in Figure
4-14. One of the conductors is connected to the output of the SSR, with the 12 V signal. The
other is connected to ground, as shown in Figure 4-15. The circuit was verified by sending
the 12 V through the SSR and then physically feeling the heating effect of each heat pad.

Figure 4-14: 5-way conductor connected to the three heat pads positive side.

— A

Heat pad 1

A

Heat pad 2

AW —

Heat pad 3

SSR |
L

12V

Figure 4-15: Three heat pads connected in parallel with a 12 V signal controller by a SSR.

4.3.4 Fitting Temperature Sensor

The temperature sensor will be located inside the soda can which will be placed inside the
pressure vessel, as shown in Figure 4-1. The sensor is taped to wooden chopsticks to keep it
approximately in the middle of the soda can, as shown in Figure 4-16.
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Figure 4-16: Temperature sensor taped to wooden chopsticks.

The chopsticks are put into the soda can through its opening, with a skew angle, all the way
to the bottom. The chopsticks are taped to the soda can to secure the angle, as shown in
Figure 4-17. Insulation material is then fitted into the soda cans opening, to ensure that heated
air won’t escape easily, as shown in Figure 4-18.

Figure 4-17: The chopsticks are taped to the soda can so it won’t move.
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Figure 4-18: Insulation material is fitted into the soda cans opening, to ensure that heated air won’t escape
easily.

4.3.5 Fitting into Pressure Vessel

The soda can, with heat pads and temperature sensor, is fasten to metal rods connected to the
pressure vessel lid with bundling strap and tape, as shown in Figure 4-19. The cables for the
heating circuit is strapped in the bottom, securing its location while going into the pressure
vessel. All cables out of the pressure vessel needs to go through a, already existing, rubber
tube in the lid, shown in Figure 4-20, to keep it waterproof.

Figure 4-19: The insides of the physical prototype subsea sensor system.
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Figure 4-20: There are two rubber tubes in the lid of the pressure vessel where all the cables must go through, to
keep it water proof.

Since the system will be moved around for testing in different environments, the temperature
sensors cable is fitted with a connector, at outside end of the rubber tube, as shown in Figure
4-21. This way it can easily be detached from the amplifier and moved without unscrewing
the cables from the terminal.

\

Figure 4-21: Fitting temperature sensor cables into a connector for easy detachment.

4.3.6 Connecting to Raspberry Pi

Table 4.2 and Table 4.3 presents how the Raspberry Pi is connected to RTD temperature
sensor amplifier and the control signal circuit respectively, based on the Raspberry Pi pinout
overview shown in Figure 4-22.

Table 4.2: Raspberry Pi pin connection to RTD temperature sensor amplifier MAX31685.

Raspberry Pi 3 Model B MAX31685
Pin name: Pin number: Name:

3.3v DC Power 01 VIN

Ground 06 GND
GP1011 (SPI_CLK) 23 CLK

GP1009 (SPI_MISO) 21 SDO

GP1010 (SPI_MOSI) 19 SDO

GP1008 (SPI_CEO_N) 24 CS
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Table 4.3: Raspberry Pi pin connection to the control signal circuit.

Raspberry Pi 3 Model B Component Transistors
] ] name: connection side:
Pin name: Pin number:
5v DC Power 02 SSR Collector
GPIO17 (GP1O GENO) 11 Resistor Base
Ground 39 Emitter

Rev. 2
29/02/2016

Raspberry Pi 3 GPIO Header

Ground
GPIO17 (GPIO_GENO)
GPIO27 (¢
GPI1022
3.3v D(
GPIO10 (SPI_MOSI
GPIO09 (S
GPIO11 (S
Ground

ID_SD (12C 1D EEPROM)|HONO)

GPIOOS
GPIO06
GPIO13
GPIO19
GPI026
Ground

er 5v
Ground

)0) GPIO14
xD0) GPIO1S

GPIO_GEN1) GPIO18

Ground

1) GP1023
ENS) GPIO24
Ground

PIO_GEN6) GP1025

0_N) GPIO08
N) GPIOO7

2C ID EEPROM) ID_SC

Ground
GPIO12
Ground
GPIO16
GP1020
GPIO21

www.element14.com/RaspberryPi

Figure 4-22: Pinout of Raspberry Pi 3. [20]

4.3.7 Closing the Pressure Vessel

Then the lid, containing all the components, is put into the pressure vessel. The complete
physical prototype of the subsea sensor system is shown in Figure 4-23.
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Figure 4-23: The physical prototype subsea sensor system.
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5 Developing Software PID

This chapter is about the pre-preparation of the software development and the finished
application. Presenting the planning techniques as well as snippets of the code.

5.1 Application planning

This chapter presents the basic ideas for the program and the following subchapters shows the
planning drafts in the startup phase of software development. By using the planning tools
FURPS and Use Case Diagram.

System overview is shown in Figure 5-1. The PID application retrieves parameters from the
GUI and sends process status to it. It also reads information from the process and writes new
control signal to the process.

Parameters Write

Software PID |
application [

GUI Process

Process Read

status

Figure 5-1: System overview from GUI to the application to the process.

Figure 5-2 explains the different components to be connected to the system. For information
about the Control signal circuit, Subsea sensor system and ADC see chapter 4.

Hardware: Raspbery Pi

Software i Control
< Write > signal
circuit
A 4
Screen HDMI
Application Subsea
e sensor
: USE system
Keyboard A
Ib ADC
Mouse Read

Figure 5-2: System overview of main components in the prototype subsea sensor software PID control system.

5.1.1 FURPS

FURPS is a model for classifying the functionality and requirements of a software program
and is short for Functionality, Usability, Reliability, Performance and Supportability.[21] The
FURPS is developed based on the task description and cooperation with external supervisors
from OCTIO. The FURPS focus is on functionality and usability and it is shown in Table 5.1.
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Table 5.1: FURPS

F: Read Temperature: Establish connection to ADC. Retrieve temperature
information from ADC using SPI.
Activate Heating: Sets correct GPIO high, using GPIO library, to activate the SSR.
PID controller: Regulating heating based on temperature readings.
Monitor and Alter: Monitoring temperature and controller output and alter PID
parameters.

u: Application Language: English.
System: Raspbian.
Displaying current temperature, controllers output, sample time and PID
parameters.

R: Running for several days.

P: Performance in temperature stability.

S -

5.1.2 Use Case Diagram

A Use Case Diagram, shown in Figure 5-3, is created to visualize the functionality described
in the FURPS. It describes how the different system parts are connected.

Raspberry Pi Application

/m Heating | i
/ Steady State Relay

‘——'m-and Alter —/F"_I'E:)-ntroller
\ N

/.'-""'_'_'_'_._“_‘—‘_‘_‘_\_""‘-\\

Analogue to digital converter

Figure 5-3: Use Case diagram for the PID controller software.

The User is a person with access to the system. User is connected to Monitor and Alter where
it’s possible to view current temperature and controller output. By receiving those values
from the PID controller connection to Monitor and Alter. This connection also gives the User
possibility to adjust the PID parameters.

PID controller is connected to Read Temperature where temperature information is retrieved
from the ADC using SPI. It’s also connected to Activate Heating, which turns on the SSR
controlling the power to the heat pads.
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5.2 Graphical User Interface (GUI)

The GUIs main purpose is give an easy way to adjust control parameters and to monitor the
process. Instead of changing the code between tests and reading temperature values from the
Terminal window. All the applications functionalities are gathered on one page, shown in
Figure 5-4.

Controller

Temp 0.555223
u_time 0.500000

u% 93.990000
Sample time 0500 |+| Update sample time
PID parameters

Kp 30.000000

Ki 0.500000

Kd 0.100000
SP 31.000

Save as Initial values
Update SP Update all

Reset PID to initial values

Figure 5-4: The applications Graphical User Interphase.

The three topmost text fields, Temp, u_time and u %, are read only showing temperature,
controller output in time [s] and percent respectively. They are from here denoted text output
fields. The other text fields are for adjusting PID parameters and are denoted text input fields.
They are updated during the startup procedure with values from a Comma Separated Values
(CSV) config file containing initial values. Except from at startup, they are solely change
according to user input. The functionality of the buttons is explained in Table 5.2. By clicking
the x in the topmost right corner, the application shuts down securely with a shutdown
procedure.

Table 5.2: Functionality of the buttons in the GUI.

Name: Functionality:

Update sample time | Reads the text input field Sample time and sets the systems sample
time variable equal to this value.

Save as initial values | Reads all text input fields and saves these to a CSV config file.

Update SP Reads the text input field SP and sets the systems set point variable
equal to this value.

Update all Reads all text input fields and sets the systems respective variable
equal to its counterpart text field value.

Reset PID to initial Updates all text input fields with values from a CSV config file.
values
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5.3 Program Functionality

This chapter will explain the main functionalities of the application and includes some
snippets of the code. For full code see APPENDIX

5.3.1 The Control Loop

The control loop is started in a separate thread, before initializing the GUI. The control loop
functionality is explained in Figure 5-5. The control loop is a while loop inside a method
called control_loop(). It has its own start up procedure, initializing variables and creating new
CSV file for measurement data. With a unique filename of the current date and time, securing
no overwrite of measurement data.

——Wait to begin next cycle

Start up procedure Initialize GUI
o= =======|====- |
| While loop ¥
1
1 —> Get temperature o« > ADC class
! 1
! 1
1 1
[ A 4 1
1
" Get new control signal 1 PID class
1
! 1
! 1
1 2 1
! 1
I Update GUI I
1 1
! 1
| ¥ Ig
1 18
I Set control signal | 2> GPIO HIGH
1 1 _%
! 1
| Wait for sending to complete I
1 1
1 Log to measurement file] 1
| 1
! 1
] If While loop is true 1
| 4 I
1 1
| 1
Ll

le e e = g —

If While loop is false

Shut down procedure

Figure 5-5: The functionality for the control loop.

The control loop is controlled by a global Boolean variable named RunProgram. As long as
RunProgram is equal to TRUE the control loop continues its cycle. The control loop is
enclosed by a try-finally statement, to secure proper shutdown, e.g. turning of heating. This is
shown in Figure 5-6. A finally clause is always executed before leaving the try statement. To
visually verify that the application is shut down properly it is printed “### PROPER
SHUTDOWN ###” in the Raspberry Pi terminal.
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RunProgram

RunProgram: B8

GPIO. )
print( OPER SHUTDOWN ###")

Figure 5-6: The try-finally statement that enclosuses the While Loop, to secure proper shutdown.

5.3.2 Reading Temperature from the ADC

For reading temperature there is created a class called ADC, this class is based on code found
in reference [22]. A code snippet of the method, inside the ADC class, for reading
temperature with return value is showed in Figure 5-7. The steps of this method is illustrated
in Figure 5-8. In step 1 sets the clock frequency. Step 2 is the shift register data exchange.
Step 3 is converting reading from Q to °C, this formula is explained in the following
subchapter. Last step, step 4 is returning the temperature value. If its detected cable faults
when reading the temperature, an error message describing the cable fault will be printed in
the Terminal before properly shutting down.

def readTemp(self):

[rtd_msb, rtd 1sb] [out[1], out[2]]

rtd_ADC_Code (( rtd_msb 8 ) rtd_1sb )

temp_C self.calcPT1808Temp(rtd_ADC_Code)

Figure 5-7: Snip of code from readTemp method in the ADC class.
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Step 1

readTemp()

writeRegister()

sendByte()

Step 2

readTemp() readRegisters() recvByte()

sendByte()

Step 3

readTemp() < calcPT100Temp(}

Step 4

return temperature

Figure 5-8: The steps for reading temperature.

5.3.3 Converting Resistance to Temperature

This subchapter is based on reference [16]. For converting the resistance to temperature, the
Callendar-Van Dusen equation, shown in equation (5.1), can be used. The resistance vs
temperature curve isn’t completely linear, which the Callendar-Van Dusen equation
describes. A straight-line approximation would give error 0 °C at 0 °C, but for 100 °C the
error is -1.4 °C and error -1.75 °C for temperature -100 °C.

R(T)=Ry(1+aT+bT?+c(T—-100)T3 (5.1)

Where T is temperature in °C, R(T) is resistance at T and R, is resistance at T equal to 0 °C.
The Callendar-Van Dusen coefficients value are shown in equation (5.2).

a =3.90830- 1073
b = —5.77500 - 1077 -
¢=0for0°C <T < 850°C and (5.2)

c =—4.18301-10"12 for —200°C < T < 0°C

Callendar-Van Dusen solved for temperature, in the range 0 to 850 °C, is shown in equation
(5.3).

((Ry-a)>—4-Ry-B-(Ry — R(T)))% ‘R -B (5.3)

Tz(_Ro'a‘l' 2 0

R(T) is found by using equation (5.4).
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AD Ccode * Rref
FS — ADC,pge

R(T) = (5.4)
Where FS is the ADC’s full-scale code, ADC¢,qe is the ADC’s output code and Ryf is the
reference resistor. For temperatures under 0 °C the straight-line approximation will be used,
as shown in equation (5.5).

ADCCOde)
T=|——|-2 55
( = 56 (5.5)

5.3.4 PID Class

The PID class is based on the PID code in reference [23]. Figure 5-9 shows the code for the
method with the PID algorithm. For explanation of the algorithm see chapter 2.2. This
method is called each Control loop with an updated temperature value. There is implemented
Anti Windup by keeping the I-term within maximum and minimum values. By using if and
and elif, else if, statements to check if I-term is crossing these limits. For example if the I-
term exceeds the upper limit, it is sat equal to the upper limit. The output_value is as well
checked and if it has outside the saturation limits it will be sat equal to the respective
saturation limit it has breached.

def update(s

feedback_value

Lf.current_time = time.time()
a_time Lf

delta_error delta_time

.last_time self.current_time
.last_error = error

output_value = self.PTerm ‘self.Ki self.ITerm) (self.Kd * self.DTerm)

output_value s windup_guard:
indup_guard

self.output output_value

Figure 5-9: Snippet of the PID algorithm code.
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6 Testing and Tuning Prototype

This chapter will present PID tests on the simulator and on the prototype. The tests are
conducted to find the PID parameters which will provide the best performance in temperature
stability.

6.1 Testing Anti Windup and Sample Time Values

In the following subchapters different Anti Windup and Sample Time values will be tested
and compared.

6.1.1 Testing different Anti Windup Boundaries

The tests were conducted in an air environment of 25 °C. During the tests of different anti
windup boundaries all other parameters were kept constant, these can be seen in Table 2.1.
The test results are shown in Figure 6-1, Figure 6-2, Figure 6-3 and Figure 6-4, where the anti
windup upper limit was decreased between each test. In the controller output is shown as a
blue line rising from the bottom. From the figures it can be seen that the first test is the only
one standing out. It has longer time between peak values, as well as larger overshoot and a
larger undershoot.

From the plots it can also be seen a trend, that the lower upper anti windup saturation limit
gives higher frequency in the control signal oscillation. It’s decided to go forward with anti
windup boundaries from 0 to 80, presented in Figure 6-3, since that was the one keeping
closest to Set Point.

Table 6.1: Constant PID parameters during Anti Windup boundary test.

PID Parameter: | Value

K, 0.2

K; 1.7 [s]

K, 0.000001 [s]
Set Point 31°C

Sample Time 0.5 [s]
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Figure 6-1: Windup boundary test 1, with saturation limit from 0 to 180.

Figure 6-2: Windup boundary test 2, with saturation limit from 0 to 100.

Figure 6-3: Windup boundary test 3, with saturation limit from 0 to 80.
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Figure 6-4: Windup boundary test 4, with saturation limit from 0 to 30.

6.1.2 Sample Time

The test was done in air environment at around 25 °C. During the tests of different sample
times all other parameters were kept constant, these can be seen in Table 6.2: Constant PID
parameters during Sample Time test.Table 6.2. The tests are presented in Figure 6-5, Figure
6-6 and Figure 6-7 with Sample Time values 0.25 [s], 0.5 [s] and 1 [s] respectively. The
performance in temperature stability is equal for all the values tested. It was decided to use
Sample Time equal to 0.5 [].

Table 6.2: Constant PID parameters during Sample Time test.

PID Parameter: | Value

K, 0.2

K; 1.7 [s]

K, 0.000001 [s]
Set Point 31°C

Anti Windup 0to 80

Figure 6-5: Sample Time test 1, with Sample Time equal to 0.25 [s].

45



6 Testing and Tuning Prototype

Figure 6-6: Sample Time test 2, with Sample Time equal to 0.5 [s].

Figure 6-7: Sample Time test 3, with Sample Time equal to 1 [s].

6.2 Tuning PID on Simulation

Simulation was tuned using Try and Error method. Started with an initial guess of K, equal to
0.1 and Kq equal to 0.000001. Also using the values for Anti Windup and Sample Time found
previously. There were systematically tried different values for Kjin a Set Point step response
from 26 °C to 31 °C. Environment temperature was set to 25 °C and self heating variable H¢
was sat to 0. Since the prototype doesn’t have any self heating from electrical components.

After settling on a Kj equal to 0.2, K, was systemically tested and so on Kq. PID parameters
found was K equal to 0.1, Kj equal to 0.2 and Kq equal to 0.001. The simulated step response
with these parameters is shown in Figure 6-8.
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Figure 6-8: Step response in Set Point from 26 to 31 on Simulation.

6.3 Prototype Tuning

The PID parameters found for PID on the simulation is tested on the prototype under similar
conditions. Set Point step response from 26 °C to 31 °C in air environment at 25 °C. The
results are presented in Figure 6-9 and is not providing satisfactory temperature stability.

Figure 6-9: Simulation tuned PID parameters tested on prototype by step response in Set Point from 26 °C to 31
°C. The test is conducted in air environment at 25 °C.

Further testing was done by doing step response Set Point in 25 °C air, 3 °C water and air 0
°C. Temperature stability during a change in environment from air 25 °C to water 3 °C and
from air 25 °C to air 0 °C. PID parameters found was K, equal to 30, Ki equal to 0.5 and Kgq
equal to 0.1. A set point step response with these parameters in environment 0°C is shown in
Figure 6-10.
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Figure 6-10: Step response 0°C environment.

Before reaching the parameters, shown in the figure above, it was conducted an environment
disturbance test from air to water 3 °C shown in Figure 6-11. The parameters in this test was
Kp =30, Ki=0.29 and Kd = 0.01. It’s pretty obvious after making the plot in excel that it
converges into a steady-state error but it wasn’t noticed from the LivePlot. Therefor these
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t of 0 °C, were the steady-state was clearer

in air environmen

parameters were further tested
as shown in Figure 6-12.

Air 25 °C to water 3 °C
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6.3.1 Disturbance in Environment test.
A last test with environment change every 12 minutes over 3 hours timespan was conducted,

as shown in Figure 6-14. The test is based on heat loss development from a test shown in
Figure 6-13. The environment was changed between air 22 °C to air 0 °C. Initial system

temperature was 22.6 °C. The test was started by putting the prototype into air 0 °C from air
22 °C. The performance of temperature stability was +/- 0.1 °C. The first 15 minutes of the

test is shown in Figure 6-15. The error compared with environment change is shown in

Figure 6-16, worth mentioning that the largest error peak is confirmed as noise. The other 2
peaks are probably also noise but needs more data to confirm, or implement a filter and see if

it still occurs. Figure 6-17 shows the correlation between environment change and control

signal.

63% Temperature drop at x = 8:24 PM

Figure 6-13: Heat loss development from 31 °C internal temperature, in 0 °C air environment. Conducted by

34

32

Heated compartment temperature
~ w
B 8

ra
&

24

turning off heating after being stable at 31 °C.

Environment disturbance test

——Temperature

Time

pit.SetPoint = Environment temg

23

Environment temperature

Figure 6-14: Prototype PID parameter test, by every 12 minutes changing between air 22 °C to air 0 °C. The test
was conducted over 3 hours. The environment temperature is showed in red and is collected at time the change

occurs.
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Startup during environment change
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7 Conclusion and Future Works

Developed software PID system worked as intended and proved good performance in
temperature stability compared for subsea application. But before actual implementation more
test would be needed.

The Raspberry Pi 3 as a SOC device for software PID implementation worked as intended. The
ADC worked as intended.

The building of a Physical prototype subsea sensor system was as intended.

The simulation wasn’t good enough to be used for tuning, but there was correlation to the real
application, so it might be a good starting point.

7.1 Improving Simulation

Heat response is very fast. Adding some sort of delay to the heat added (P_in) might solve
this. Another possible solution is to use known data from real application as parameters A, B
and C, since it simulation of a differential equation. E.g. : Ax+Bu + C.

7.2 Extending Prototype Software PID

More water tests to confirm performance in temperature stability.

Test software PID on real subsea sensor system.

Extend to Cascade control system.

Activate plot from GUI.

Improve error handling. Only handling the most probable and important, errors at this
moment.

Add a measurement filter.

e Clean up and improve code. To increase computational speed and readability.

7.3 Developing for the Real System
Since C++ is needed for the real system, the options are:

e Manually convert Python to C++. E.g. find similar libraries in C++ as to the python
libraries used.

e Treat Python code as prototype and start from scratch. Use the FURPS+ and USE
CASE to develop the software PID in C++.
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Appendix A — Task Description

FMH606 Master’s Thesis

Title: Compact temperature regulator for subsea sensors
Supervisor: Hans-Petter Halvorsen

External Partner: Octio

Task Description:_

Development and implementation of a versatile and compact PID temperature controller in a
SmartFusion2 SoC FPGA device, or similar ARM microcontroller, and verifying
performance, temperature stability for use with a subsea pressure and gravity monitoring
system.

Possible sub tasks (ranked):

1. Study and gain experience of a commercial PID controller in a “sample temperature
regulation system”

2. Simulate a system model of a sample temperature regulation system including PID
controller.

3. Develop and implement a SW PID controller architecture with comparable
performance as the reference temperature controller.

4. Develop and implement a simple register based system for parameter setting, control

and monitoring

Extend the system to an RTOS task (for integration into an existing SW system)

6. Extend the system to comprise a multistage (cascade) PID controller

o1

The actual implementation can be done on a variety of ARM microcontroller platforms such
as:

Raspberry P1 3

Arduino

SmartFusion2 SoC FPGA
others

The SW language should preferably be based on C/C++ or Python.

The simulation platform could be based on Matlab, Simulink or LabView.

The verification of the performance could be by comparison of the reference system with an
industrial controller and the SW PID controller.
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Task Background:

Commercial PID temperature controller often comes in enclosures including display or with
rack mounts which are impractical for volume constrained subsea applications. Control and
monitoring require a dedicated communication channel, normally RS-232 or ethernet, which
adds on the complexity.

As few commercial or open core software temperature controller are available, developing a
flexible SW architecture allowing integration into a general micro-controller system, is of
interest.

Student Cateqory: Il1A students.

Practical Arrangements: The assignment is reserved for a student that already has a
collaboration with the company in question.

OCTIO may provide a development platform (ARM). An example PID controller core (for
Arduino) may be provided. Lab space and physical prototype is available for testing and/ or
comparing systems.

The student needs to be located in Bergen, Norway.

Signatures:

Supervisor (date and signature):

Students (date and signature):

58



Appendix B — Software PID code

import time, math

#for filename

from time import gmtime, strftime
import RPi.GPIO as GPIO
import threading

#for GUI

import sys

#QT stuff

import pyqtgraph as pg

import PyQt5

from PyQt5 import QtCore
from PyQt5.QtWidgets import *

import numpy as np

# The window from QtCreator aka GUI

import mainwindow_auto
import csv

# create class for our Raspberry Pi GUI

7 Conclusion and Future Works

class MainWindow(QMainWindow, mainwindow_auto.Ui_MainWindow):

# access variables inside of the Ul's file

### functions for the buttons to call

# def pressedQuit(self):

def pressedSavelnit(self):
global SampleTime
SP = gui.txtSetSP.value()
P = gui.txtSetKp.value()
I = gui.txtSetKi.value()
D = gui.txtSetKd.value()
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fileName = "pid_config.csv'
mode = "w"

data =]

data = [SP, P, I, D, SampleTime]
csv_writer(data, fileName, mode)

def pressedUpdateSP(self):
SP = gui.txtSetSP.value()
newSetpoint(SP)

def pressedUpdateAll(self):
print("'start program™)
SP = gui.txtSetSP.value()
P = gui.txtSetKp.value()
| = gui.txtSetKi.value()
D = gui.txtSetKd.value()

newAllParameters(SP,P,1,D)

def pressedNewSampleTime(self):
global SampleTime
SampleTime = gui.txtSampleTime.value()

def pressedResetPID(self):
csv_reader(‘pid_config.csv')

#event handler for when you X-out the window
def closeEvent(self, event):

#make sure control loop ends properly.

global RunProgram

RunProgram = False #This will end the while loop.

event.accept() #Accepting closeing

def __init__ (self):
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super(self.__class__, self). _init_ ()
self.setupUi(self) # gets defined in the Ul file

### Hooks to for buttons

self.btnSavelnitValues.clicked.connect(lambda: self.pressedSavelnit())
self.btnUpdateSP.clicked.connect(lambda: self.pressedUpdateSP())
self.btnUpdateAll.clicked.connect(lambda: self.pressedUpdateAll())
self.btnResetPID.clicked.connect(lambda: self.pressedResetPID())
self.btnNewSampleTime.clicked.connect(lambda: self.pressedNewSampleTime())

class PID:
""'PID Controller

def _init_ (self, P=0.2, 1=0.0, D=0.0):

selfKp=P
self. Ki=1
self. Kd=D

self.sample_time = 0.00
self.current_time = time.time()
self.last_time = self.current_time

self.clear()

def clear(self):
""'Clears PID computations and coefficients™""
self.SetPoint = 0.0

self.PTerm =0.0
self.ITerm = 0.0
self.DTerm =0.0
self.last_error = 0.0
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# Windup Guard

self.int_error = 0.0
self.windup_lower_guard = 0.0
self.windup_guard = 80.0

self.output = 0.0

def update(self, feedback_value):
"""'Calculates PID value for given reference feedback

.. math::
u(t) = K_pe(t) + K_i\int_{0}\{t} e(t)dt + K_d {de}/{dt}

error = self.SetPoint - feedback value

self.current_time = time.time()
delta_time = self.current_time - self.last_time
delta_error = error - self.last_error

self.PTerm = self.Kp * error
self.ITerm += error * delta_time

# Integral Anti Windup

if (self.ITerm < self.windup_lower_guard):
self.ITerm = self.windup_lower_guard

elif (self.1Term > self.windup_guard):
self.ITerm = self.windup_guard

self.DTerm =0.0
if delta_time > 0:
self.DTerm = delta_error / delta_time

# Remember last time and last error for next calculation
self.last_time = self.current_time
self.last_error = error
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output_value = self.PTerm + (self.Ki * self.ITerm) + (self.Kd * self.DTerm)

# To hold output within bounduries
if output_value > self.windup_guard:
self.output = self.windup_guard
elif output_value < self.windup_lower_guard:
self.output = self.windup_lower_guard #lower limit since there is no cooling
else:
self.output = output_value

def setKp(self, proportional _gain):
self.Kp = proportional _gain

def setKi(self, integral_gain):
self.Ki = integral_gain

def setKd(self, derivative_gain):
self.Kd = derivative_gain

def setWindup(self, upper_windup, lower_windup):
self.windup_guard = upper_windup
self.windup_lower_guard = lower_windup

def setSP(self, set_point):
self.SetPoint = set_point

class ADC(object):
""'Reading Temperature from the MAX31865 with GPIO using

the Raspberry Pi.

#The MIT License (MIT)
#
#Copyright (c) 2015 Stephen P. Smith
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#

#Permission is hereby granted, free of charge, to any person obtaining a copy
#of this software and associated documentation files (the "Software"), to deal
#in the Software without restriction, including without limitation the rights
#to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
#copies of the Software, and to permit persons to whom the Software is
#furnished to do so, subject to the following conditions:

#

#The above copyright notice and this permission notice shall be included in all
#copies or substantial portions of the Software.

def __init__(self, csPin = 8, misoPin = 9, mosiPin = 10, clkPin = 11):
self.csPin = csPin
self.misoPin = misoPin
self.mosiPin = mosiPin
self.clkPin = clkPin
self.setupGP10()

def setupGPI10O(self):
GPIO.setwarnings(False)
GPI0O.setmode(GP10.BCM)
GPIO.setup(self.csPin, GPIO.OUT)
GPIO.setup(self.misoPin, GP10.IN)
GPIO.setup(self.mosiPin, GP10.0UT)
GPIO.setup(self.clkPin, GP10.0UT)

GPIO.output(self.csPin, GP10.HIGH)

GPIO.output(self.clkPin, GP10.LOW)

GPIO.output(self.mosiPin, GP10.LOW)
def readTemp(self):

self.writeRegister(0, 0xA2)

# conversion time is less than 100ms
time.sleep(.01) #giving it 10ms for conversion
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# read all registers
out = self.readRegisters(0,8)

# define least and most significant bit

[rtd_msb, rtd_Isb] = [out[1], out[2]]

# picking out the ADC code for the temperature reading
rtd_ ADC_Code = ((rtd_msb << 8)|rtd _Ish)>>1

# converting ADC code to degrees Celsius

temp_C = self.calcPT100Temp(rtd_ADC_Code)

status = out[7]

# 10 Mohm resistor is on breakout board to help

# detect cable faults

# bit 7: RTD High Threshold / cable fault open

# bit 6: RTD Low Threshold / cable fault short

# bit 5: REFIN- > 0.85 x VBias -> must be requested

# bit 4: REFIN- < 0.85 x VBias (FORCE- open) -> must be requested
# bit 3: RTDIN- < 0.85 x VBias (FORCE- open) -> must be requested
# bit 2: Overvoltage / undervoltage fault

# bits 1,0 don't care

#print "Status byte: %x" % status

if ((status & 0x80) == 1):

raise FaultError("High threshold limit (Cable fault/open)™)
if ((status & 0x40) == 1):

raise FaultError("Low threshold limit (Cable fault/short)™)
if ((status & 0x04) == 1):

raise FaultError("Overvoltage or Undervoltage Error™)

return temp_C

def writeRegister(self, regNum, dataByte):
GPIO.output(self.csPin, GP10.LOW)
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# 0x8x to specify ‘write register value'
addressByte = 0x80 | regNum;

# first byte is address byte
self.sendByte(addressByte)
# the rest are data bytes
self.sendByte(dataByte)

GPIO.output(self.csPin, GPIO.HIGH)

def readRegisters(self, regNumStart, numRegisters):

out =[]
GPIO.output(self.csPin, GPIO.LOW)

# Ox to specify 'read register value'
self.sendByte(regNumStart)

for byte in range(numRegisters):
data = self.recvByte()
out.append(data)

GPIO.output(self.csPin, GPIO.HIGH)
return out

def sendByte(self,byte):
for bit in range(8):

GPIO.output(self.clkPin, GP10.HIGH)

if (byte & 0x80):
GPIO.output(self.mosiPin, GPIO.HIGH)

else:
GPIO.output(self.mosiPin, GP10.LOW)

byte <<=1

GPIO.output(self.clkPin, GP10.LOW)

7 Conclusion and Future Works
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def recvByte(self):
byte = 0x00
for bit in range(8):
GPIO.output(self.clkPin, GP10.HIGH)
byte <<=1
if GPIO.input(self.misoPin):
byte |= 0x1
GPIO.output(self.clkPin, GP10.LOW)
return byte

def calcPT100Temp(self, RTD_ADC_Code):
R_REF = 430.0 # Reference Resistor
Res0 = 100.0; # Resistance at 0 degC for 4000hm R_Ref
a =.00390830
b = -.000000577500

R_T = (RTD_ADC_Code * R_REF) / 32768.0 # PT100 Resistance

temp_C = -(a*Res0) + math.sqrt(a*a*Res0*Res0 - 4*(b*Res0)*(Res0 - R_T))
temp_C =temp_C / (2*(b*Res0))

if (temp_C < 0): #use straight line approximation if less than 0
temp_C = (RTD_ADC_Code/32) - 256

return temp_C

class FaultError(Exception):
#make sure control loop ends properly.
global RunProgram
RunProgram = False #This will end the while loop.

pass

def get_temp():
#import max31865
csPin=8
misoPin =9
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mosiPin = 10

clkPin =11

adc = ADC(csPin,misoPin,mosiPin,clkPin)
tempC = adc.readTemp()

return tempC

def scale_u(x):#y=ax+Db
global SampleTime
yl=0
y2 = SampleTime
x1 = pid.windup_lower_guard
x2 = pid.windup_guard

a=(y2-yl)/(x2-x1)
b=yl-(a*x1)
y=(@*x+b)
return y

def scale_u_prosent(u): #Scale u PWM til prosent
global SampleTime
scaled = (u/ SampleTime) * 100
return scaled

def scale_u_for_plot(x): #y=ax+b
yl=0.7
y2 =39.30
x1=0
x2 =100

a=(y2-yl)/(x2-x1)
b=yl-(a*x1)
y=(a*x+b)
return y
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def start_heating(duration):
GPI0O.setmode(GPIO.BCM)
GPIO.setup(17, GPIO.0OUT)
GPI10.output(17, GP10.HIGH)
time.sleep(duration) #Signal width
GPI10.output(17, GP10.LOW)
GPIO.cleanup()
pass

def control_loop():
start_time = time.time()
prev_time = start_time

lastTemp = 0.0

csv_reader(‘pid_config.csv')

#Creating measurement file with explanatory names in the first row

#filename is unique. It's used date and time in filename to secure no overwriting

fileName = strftime("%Y -%m-%d %H:%M:%S", gmtime()) + ".csv'

data =]

data = ['Date Time', "Temperature', 'u_prosent','SampleTime', 'pid.SetPoint’, 'pid.Kp',
'pid.Ki', 'pid.Kd','windup']

mode = "a"

csv_writer(data, fileName, mode)

global SampleTime

# Creating global arrays for plotting purposes
global arrayTempC,arraySP,arrayCnt, arrayU
arrayTempC =]

arraySP =]

arrayCnt =[]

arrayU =]
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# counter for plotting
cnt=0

try:
global RunProgram

while RunProgram:

temperatureC = get_temp()

deltaTempl = temperatureC - lastTemp
deltaTemp2 = lastTemp - temperatureC

#filter to remove bad readings
if cnt == 0:
pass
elif deltaTempl > 0.5:
temperatureC = lastTemp
elif deltaTemp2 > 0.5:
temperatureC = lastTemp
else:
pass

lastTemp = temperatureC

# Run PID

pid.update(temperatureC)

# Scale pid PWM

u_scaled = scale_u(pid.output)

u_prosent = scale_u_prosent(u_scaled)

# Update GUI
gui.txtShowTemp.setVValue(temperatureC)
gui.txtShowUTime.setValue(u_scaled)
gui.txtShowUPorsent.setValue(u_prosent)
# Run heating

start_heating(u_scaled) #PWM signal
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# Log measurement and parameters to .csv file

data =]

mode = "a"

data = [strftime("%Y-%m-%d %H:%M:%S", gmtime()), temperatureC, u_prosent,

SampleTime, pid.SetPoint, pid.Kp, pid.Ki, pid.Kd, pid.windup_guard]

array

csv_writer(data, fileName, mode) #Call the writer
# Log data for graph .txt file
arrayTempC.append(temperatureC)
arraySP.append(pid.SetPoint)
arrayCnt.append(cnt)

u_for_plot = scale_u_for_plot(u_prosent)
arrayU.append(u_for_plot)

txt_writer()

cnt=cnt+1
if(cnt>4000): #If you have 4000 or more points, delete the first one from the

arrayTempC.pop(0) #This allows us to just see the last 4000 data points
arraySP.pop(0)

arrayCnt.pop(0)

arrayU.pop(0)

# setting loop time
# SampleTime is controlling looptime
sleep = SampleTime - (time.time() - prev_time)
if sleep >=0.01:
time.sleep(sleep-0.01) # Compensate time this calculation takes
else:
time.sleep(0.0001)

prev_time = time.time()

pass
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finally:
GPIO.cleanup() #To secure that heating is shutdown.
print("### PROPER SHUTDOWN ###")

def txt_writer():
global arrayTempC, arraySP, arrayCnt, arrayU

file = open("temperature.txt","w"
for index in range(len(arrayCnt)):

file.write("\n" + str(arrayCnt[index])+
" "+str(arrayTempCl[index])+","+str(arraySP[index])+","+str(arrayU[index]))

file.close()

def csv_writer(data, path, mode):

Write data to a CSV file path

with open(path, mode, newline=") as csv_file:
writer = csv.writer(csv_file, delimiter=",")
#for line in data:
writer.writerow(data)

def csv_reader(path):
parameter =[]
with open(path, newline=") as csv_file:
reader = csv.reader(csv_file, delimiter=",")
for row in reader:
parameter = row

#Also set new sampletime
global SampleTime
SampleTime = float(parameter[4])

newAllParameters(float(parameter[0]),float(parameter[1]),float(parameter[2]),float(paramete

r[31)
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def newSetpoint(SP):
pid.SetPoint = SP

def newAllParameters(SP, P, I, D):
pid.SetPoint = SP
pid.setKp(P)
pid.setKi(l)
pid.setKd(D)
newParametersToGui()

def newParametersToGui():
global SampleTime
gui.txtSetSP.setVValue(pid.SetPoint)
gui.txtSetKd.setValue(pid.Kd)
gui.txtSetKi.setValue(pid.Ki)
gui.txtSetKp.setValue(pid.Kp)
gui.txtSampleTime.setValue(SampleTime)

def runGui():
gui.show()
newParametersToGui()
# without this, the script exits immediately.
sys.exit(app.exec_())

if _name__ =="_main__"
global RunProgram, SampleTime
SampleTime = 2.0
RunProgram = True

pid = PID(0, 0, 0) # object is accesible to all

app = QApplication(sys.argv)
gui = MainWindow()
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#daemon not = True, so that control_loop will end properly
t = threading. Thread(target=control_loop)
t.start()

runGui()
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